

2 CROSSTALK The Journal of Defense Software Engineering October 2007

4

10

13

17

22

28

3
12
21
31

DeDe papa rr tmentstments

From the Sponsor

Web Sites

Coming Events

BackTalk

Using the Incremental Commitment Model to Integrate
System Acquisition, Systems Engineering, and Software
Engineering
This article presents the Incremental Commitment Model which emerged
from a National Research Council study and related efforts; it shows
promise of improving integration of hardware, software, and human
factors into the systems engineering and acquisition process.
by Dr. Barry Boehm and Jo Ann Lane

Systems Engineering for the Global Information Grid:
An Approach at the Enterprise Level
This article describes an approach at the enterprise level for systems
engineering for the Global Information Grid.
by Patrick M. Kern

ConOps:The Cryptex to Operational System Mission
Success
This article covers the Concept of Operations document – what it is and
what it is not – and describes the role it played in four Air Force programs.
by Alan C. Jost

Software System Engineering:A Tutorial
This tutorial integrates the definitions and processes of software
engineering standards into the software systems engineering process
developed by the Institute of Electrical and Electronics Engineers.
by Dr. Richard Hall Thayer

Issues Using DoDAF to Engineer Fault-Tolerant Systems
of Systems
This article considers aspects of the Department of Defense Architectural
Framework in the systems engineering of complex systems that can be
used to improve fault tolerance, describes some apparent deficiencies of
the framework from a fault-tolerance perspective, and provides suggestions
for improvement.
by Dr. Ronald J. Leach

A Framework for Evolving System of Systems Engineering
This article provides a framework for examining the differences between
systems engineering and system of systems engineering, and notes that
additional work is needed in the development of normative and
prescriptive models.
by Dr. Ricardo Valerdi, Dr. Adam M. Ross, and Dr. Donna H. Rhodes

OpenOpen FFororumum

SystemsSystems EngineerEngineeringing
CrossTalk

CO-SPONSORS:

DOD-CIO

NAVAIR

76 SMXG

309 SMXG

402 SMXG

DHS

STAFF:
MANAGING DIRECTOR

PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

PHONE

E-MAIL

CROSSTALK ONLINE

The Honorable John Grimes

Jeff Schwalb

Kevin Stamey

Norman LeClair

Diane Suchan

Joe Jarzombek

Brent Baxter

Elizabeth Starrett

Kase Johnstun

Chelene Fortier-Lozancich

Nicole Kentta

(801) 775-5555
crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

CrossTalk,The Journal of Defense Software
Engineering is co-sponsored by the Department of
Defense Chief Information Office (DoD-CIO); U.S.
Navy (USN); U.S. Air Force (USAF); Defense Finance
and Accounting Services (DFAS); and the U.S.
Department of Homeland Security (DHS). DoD-CIO
co-sponsor: Assistant Secretary of Defense
(Networks and Information Integration). USN co-
sponsor: Naval Air Systems Command. USAF co-
sponsors: Oklahoma City-Air Logistics Center (ALC)
76 Software Maintenance Group (SMXG); Ogden-
ALC 309 SMXG; and Warner Robins-ALC 402
SMXG. DHS co-sponsor: National Cyber Security
Division of the Office of Infrastructure Protection.

The USAF Software Technology Support
Center (STSC) is the publisher of CrossTalk,
providing both editorial oversight and technical review
of the journal.CrossTalk’s mission is to encourage
the engineering development of software to improve
the reliability, sustainability, and responsiveness of our
warfighting capability.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 27.

517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community.Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Articles
published in CROSSTALK remain the property of the
authors and may be submitted to other publications.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, the co-sponsors, or
the STSC.All product names referenced in this issue
are trademarks of their companies.

CrossTalk Online Services: See <www.stsc.hill.af.mil/
crosstalk>, call (801) 777-0857 or e-mail <stsc.web
master@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

Cover Design by
Kent Bingham

Photo Credit: Nathan Allred

ONTHE COVER

Additional art services
provided by Janna Jensen

October 2007 www.stsc.hill.af.mil 3

From the Sponsor

As the Department of Defense (DoD) moves into more complex systems of sys-
tems and family of systems with the accompanying challenges of architectures

and product lines, software will further dominate development and deployment. Future
systems engineers will be required to have more knowledge of software in addition to
hardware. This will be a challenging transition for many, yet it is a transition that must
be made if we are to be successful in the revitalization of systems engineering for the
DoD. The importance of the role of software development in systems engineering

processes cannot be overstated.
One of the great misunderstandings of systems engineering and associated processes is the

role of software. I believe we are in the midst of a paradigm shift within the DoD. Although
developing and building hardware is difficult, we know how to do it. Conversely, few senior lead-
ers or program managers appreciate what is involved in the development and deployment of
software. Additionally, not many acquisition professionals recognize the impact of system or
requirements changes on software development. These gaps in understanding usually result in
software developers being held accountable for schedule slips and budget overruns, which
increase alienation of the software community from hardware developers and the systems engi-
neering process.

Across the DoD, significant effort is being invested in the revitalization of the technical
work force, especially systems engineering. The focus is on formal education, job training of
existing technical staffs, and recruitment of both new and experienced engineers to fill vacan-
cies. While the emphasis is on placing skilled personnel in support of acquisition and in-service
engineering programs, there is also the realization that to be successful in recruiting new uni-
versity graduates, the DoD must offer interesting and exciting hands-on work. Developing and
maintaining in-house technical tasks is a priority.

We also need to educate program managers and senior leadership on the software develop-
ment process, the unique skills of our software work force, and the role of software develop-
ment in systems engineering processes. In this issue of CrossTalk, readers will find infor-
mation that addresses the implications of software’s influence on systems engineering now and
into the future.

The basics are covered in Software System Engineering: A Tutorial by Dr. Richard Hall Thayer
where he lays out how software ties the system together. A Framework for Evolving System of
Systems Engineering by Dr. Ricardo Valerdi, Dr. Adam M. Ross, and Dr. Donna H. Rhodes pro-
vides a framework for examining differences between systems engineering and system of sys-
tems engineering. Other articles take the reader forward into the software systems engineering
world. The article Using the Incremental Commitment Model to Integrate System Acquisition, Systems
Engineering, and Software Engineering by Dr. Barry Boehm and Jo Ann Lane leads the reader down
the path to improved integration of hardware, software, and human factors. Finally, Systems
Engineering for the Global Grid: An Approach at the Enterprise Level by Patrick M. Kern, ConOps: The
Cryptex to Operational System Mission Success by Alan C. Jost, and Issues Using DoDAF to Engineer
Fault-Tolerant Systems of Systems by Dr. Ronald J. Leach take the reader into a much more com-
plex world as we head into the (as yet) uncharted and increasingly complex software systems of
the future.

We hold the future success of software systems engineering in our hands. Enjoy these
insightful CrossTalk articles that delve into the world of software systems engineering. I
trust you will take insights offered in this issue of CrossTalk and infuse them into your
efforts to develop software and systems engineering of the future.

Revitalization of Systems Engineering
Within the Department of Defense and the

Expanding Role of Software

Dr. John W. Fischer
Naval Air Systems Command

4 CROSSTALK The Journal of Defense Software Engineering October 2007

Systems Engineering

Many projects have difficulties in inte-
grating their hardware, software, and

human factor aspects. Basically, this is due
to differences between these aspects with
respect to their underlying economics,
evolution patterns, product subsetability
(ability to deliver usable, partial, initial,
operational capabilities), user tailorability,
adaptability, underlying science, and test-
ing considerations.

This article begins by summarizing
trends that have caused difficulties for cur-
rent systems engineering and acquisition
processes and underlying principles that
better address these trends. It then pre-
sents several complementary views of the
ICM, discusses their implications with
respect to acquisition and engineering
practices and personnel career paths, and it
assesses project performance with respect
to use of the principles. The principles can
also be used to avoid the negative effects
of common misinterpretations of other
current models such as the V, spiral, and
Rational Unified Process (RUP) models.

Summary of Difficulties and
Some of Their Causes
Current systems engineering and acquisi-
tion practices (and the associated program
management personnel) still rely heavily
on their historical hardware engineering
and acquisition legacy. An emphasis on
reducing hardware development and man-
ufacturing costs often leads to selection of
components with incompatible software
infrastructures and human interfaces, lead-
ing to much higher development, opera-
tions, and maintenance costs, as well as
associated system underperformance in
the software and human engineering areas.
A hardware-oriented, fixed-price, build-to-

specification contract may deliver a hard-
ware initial operational capability (IOC)
within its development budget, but may
elect not to architect or upgrade the soft-
ware in order to avoid excessive software
maintenance or human operational costs.

The relative difficulty of modifying
hardware installed in many places, as com-
pared to electronic modification of soft-
ware or modification of human opera-
tional procedures, may lead to added soft-
ware costs for hardware shortfall
workarounds or to fitting the people to
the product rather than fitting the product
to the people. And the limited subsetabili-
ty of hardware systems (e.g., aircraft with-
out landing gear or complete flight con-
trols) as compared to partial software or
human interface features often leads to
incompatibilities between single-incre-
ment hardware acquisition practices and
multiple-increment software and human
interface practices on the same project.

If these hardware-software-human
integration problems are difficult today,
they will present formidable problems for
the future if not adequately addressed.
Some trends that will exacerbate such
integration problems are the following:
1. Complex, multi-owner Systems of

Systems (SoS). Current collections of
incompatible, separately developed
systems cause numerous operational
deficiencies such as unacceptable
delays in service, uncoordinated and
conflicting plans, ineffective or dan-
gerous decisions, and inability to cope
with fast-moving events. Multiple
owners of key interdependent systems
make integration of SoS a major chal-
lenge, but the current alternative of
just trying to mash them together will

only become worse in the future [1].
2. Emergent requirements. The most

appropriate user interfaces and collabo-
ration modes for a complex human-
intensive system are not specifiable in
advance, but emerge with system proto-
typing and usage. Forcing them to be
prematurely and precisely specified gen-
erally leads to poor business or mission
performance and expensive, late rework
and delays [2].

3. Rapid change. Specifying current
point-in-time snapshot requirements on
a cost-competitive contract generally
leads to a big design up front and a
point-solution architecture that is hard
to adapt to new developments. Each of
the many subsequent changes then leads
to considerable nonproductive work in
redeveloping documents and software
(or worse, hardware), and in renegotiat-
ing contracts [3].

4. Reused components. Building all of
one’s own components from scratch will
be economically infeasible for complex
systems. However, reuse-based devel-
opment has major bottom-up develop-
ment implications, and is incompatible
with pure, top-down, requirements-first
approaches. Prematurely specifying
requirements (e.g., hasty specification of
a one-second response time requirement
when later prototyping shows that four
seconds would be acceptable) that dis-
qualify otherwise most cost-effective
reusable components often leads to
overly expensive, late, and unsatisfactory
systems [4].

5. High assurance of qualities. Future
systems will need higher assurance levels
of such qualities as safety, security, relia-
bility/availability/maintainability, perfor-

Using the Incremental Commitment Model to
Integrate System Acquisition, Systems Engineering,

and Software Engineering
Dr. Barry Boehm and Jo Ann Lane

University of Southern California Center for Systems and Software Engineering

One of the top recommendations to emerge from the October 2006 Deputy Under Secretary of Defense (DUSD)
Acquisition, Technology, and Logistics (ATL) Defense Software Strategy Summit was to find ways of better integrating soft-
ware engineering into the systems engineering and acquisition process. Concurrently, the National Research Council (NRC)
study was addressing the problem of better integrating human factors into the systems engineering and acquisition process.
This article presents a model that emerged from these and related efforts that shows promise of improving integrations. This
model, called the Incremental Commitment Model (ICM), organizes systems engineering and acquisition processes in ways
that better accommodate the different strengths and difficulties of hardware, software, and human factors of engineering
approaches. It also provides points at which they can synchronize and stabilize, and at which their risks of going forward can
be better assessed and fitted into a risk-driven stakeholder resource commitment process.

Using the Incremental Commitment Model to Integrate System Acquisition, Systems Engineering, and Software Engineering

mance, adaptability, interoperability,
usability, and scalability. Just assuring one
of these qualities for a complex SoS will
be difficult. Given the need to satisfice –
not everybody gets everything they want, but
everybody gets something they are satisfied with
– among multiple system owners with
different quality priorities, their complex
sources of conflict and trade-off rela-
tionships will make multi-attribute satis-
ficing even more challenging [5].
Such concerns led to one of the top rec-

ommendations from the October 2006
DUSD ATL Defense Software Strategy
Summit. This recommendation was to find
ways of better integrating software engi-
neering into the systems engineering and
acquisition process [6]. Concurrently, a NRC
study was addressing the problem of better
integrating human factors into the systems
engineering and acquisition process [7].

Several analyses were performed to
determine the kind of process that would
satisfactorily address these challenges. As
part of the NRC study, the strengths and dif-
ficulties of current process models were ana-
lyzed. Each had strengths but needed further
refinements to address all of the previous
five challenges. The most important conclu-
sion, though, was that there were key process
principles that address the challenges, and
that forms of the models were less impor-
tant than their ability to adopt the principles.
These key principles are the following:
1. Stakeholder satisficing. If a system

development process presents a success-
critical operational or development
stakeholder with the prospect of an
unsatisfactory outcome, the stakeholder
will generally refuse to cooperate, result-
ing in an unsuccessful system.
Stakeholder satisficing includes identify-
ing the success-critical stakeholders and
their value propositions; negotiating a
mutually satisfactory set of system
requirements, solutions, and plans; and
managing proposed changes to preserve
a mutually satisfactory outcome.

2. Incremental and evolutionary
growth of system definition and
stakeholder commitment. This char-
acteristic captures the often incremental
discovery of emergent requirements and
solutions via methods such as prototyp-
ing, operational exercises, and use of
early system capabilities. Requirements
and commitment cannot be monolithic
or fully pre-specifiable for complex,
human-intensive systems; increasingly
detailed understanding, trust, definition
and commitment is achieved through an
evolutionary process.

3. Iterative system development and
definition. The incremental and evolu-

tionary approaches lead to cyclic refine-
ments of requirements, solutions, and
development plans. Such iteration helps
projects to learn early and efficiently
about operational and quality require-
ments and priorities.

4. Concurrent system definition and
development. Initially, this includes
concurrent engineering of requirements
and solutions, and integrated product
and process definition. In later incre-
ments, change-driven rework and
rebaselining of next-increment require-
ments, solutions, and plans occurs con-
currently with stabilized development of
the current system increment. This
allows early fielding of core capabilities,
continual adaptation to change, and
timely growth of complex systems with-
out waiting for every requirement and
subsystem to be defined.

5. Risk management – risk-driven
anchor-point milestones. The key to
synchronizing and stabilizing all of this
concurrent activity is a set of risk-driven
anchor point milestones. At these mile-
stones, the business, technical, and oper-
ational feasibility of the growing pack-
age of specifications and plans is evalu-
ated by independent experts. Shortfalls
in feasibility evidence are treated as risks
and addressed by risk management
plans. If the system’s success-critical
stakeholders find the risks acceptable
and the risk management plans sound,
the project will proceed to the next
phase. If not, the project can extend its
current phase, de-scope its objectives, or
avoid low-return resource commitments

by terminating the project. If the risks of
proceeding straight into development
are negligible, the project can skip one or
more of the early phases.

Overview of the ICM
The ICM builds on the strengths of current
process models: early verification and vali-
dation (V&V) concepts in the V-model,
concurrency concepts in the Concurrent
Engineering model, lighter-weight concepts
in the Agile and Lean models, risk-driven
concepts in the spiral model, the phases and
anchor points in the RUP [8, 9, 10], and
recent extensions of the spiral model to
address SoS acquisition [11].

An overview of the ICM life-cycle
process is shown in Figure 1. In comparison
to the software-intensive RUP, the ICM also
addresses hardware and human factor inte-
gration. It extends the RUP phases to cover
the full system life cycle: An Exploration
phase precedes the RUP Inception phase,
which is refocused on valuation and invest-
ment analysis. The RUP Elaboration phase
is refocused on architecting (a term based
on describing concurrent development of
requirements, architecture, and plans [12]),
which adds feasibility evidence; the RUP
Construction and Transition phases are
combined into the Development phase; and
an additional Operation phase combines
operations, production, maintenance, and
phase-out. Also, the names of the mile-
stones are changed to emphasize that their
objectives are to ensure stakeholder com-
mitment to proceed to the next level of
resource expenditure based on a thorough
feasibility and risk analysis, and not just on

October 2007 www.stsc.hill.af.mil 5

Risk? Risk? Risk? Risk? Risk?

Stage I: Incremental Definition Stage II: Incremental Development

 and Operations

Activities

General/

DoD Milestones

ICM

Life-cycle Phases

Concurrent risk-and-

opportunity-driven

growth of system

understanding,

definition, and

development

Evaluation of evidence

of feasibility of proceed

Stakeholder review

and commitment

Initial scoping Concept

definition

investment

analysis

System

architecting

Increment 1

development

Increment 2

architecting

rebaseline

Increment 1

operations

Increment 2

development

Increment 3

architecting

rebaseline

Feasibility

rationales

*** *** ***

High, but

addressable

Too high,

unaddressable

Acceptable

Negligible

E

x

p

l
o

r
a

t
i
o

n

C

o

m

m

i
t
m

e

n

t

R

e

v

i
e

w V

a

l
u

a

t
i
o

n

C

o

m

m

i
t
m

e

n

t

R

e

v

i
e

w A

r
c

h

i
t
e

c

t
u

r
e

C

o

m

m

i
t
m

e

n

t

R

e

v

i
e

w
D

e

v

e

l
o

p

m

e

n

t

C

o

m

m

i
t
m

e

n

t

R

e

v

i
e

w O

p

e

r
a

t
i
o

n

s

C

o

m

m

i
t
m

e

n

t

R

e

v

i
e

w O

p

e

r
a

t
i
o

n

s

C

o

m

m

i
t
m

e

n

t

R

e

v

i
e

w

V
a

l
u

a

t
i
o

n

A
r
c

h

i
t
e

c

t
i
n

g

D
e

v

e

l
o

p

m

e

n

t 1

A

r
c

h

i
t
e

c

t
i
n

g
2

E
x

p

l
o

r
a

t
i
o

n

O
p

e

r
a

t
i
o

n
1

D

e

v

e

l
o

p

m

e

n

t 2

A

r
c

h

i
t
e

c

t
i
n

g
3

.

.

.

ECR VCR/CD ACR/A DCR/B
OCR1/C1

DCR2/B2

OCR2/C2

DCR3/B3

Adjust scope, priorities, or discontinue

Note: CD, A, B, and C are the Department of Defense (DoD) acquisition milestones.

Figure 1: Overview of the Incremental Commitment Life-Cycle Process

Systems Engineering

the existence of a set of system objectives
and a set of architecture diagrams. Thus, the
RUP Life-Cycle Objectives (LCO) mile-
stone is called the Architecture Commit-
ment Review (ACR) in the ICM, and the
RUP Life-Cycle Architecture (LCA) mile-
stone is called the Development Commit-
ment Review (DCR).

In comparison to the sequential water-
fall [13] and V-model [14], the ICM explic-
itly does the following:
• Emphasizes concurrent engineering of

requirements and solutions.
• Establishes feasibility rationales as

pass/ fail milestone criteria.
• Enables risk-driven avoidance of

unnecessary documents, phases, and
reviews.

• Provides support for a stabilized cur-
rent-increment development concur-
rently with a separate change process-
ing and rebaselining activity to prepare
for appropriate and stabilized develop-
ment of the next increment.
These aspects can be integrated into a

waterfall or V-model, enabling projects
required to use such models to cope more
effectively with systems of the future.

The overall life-cycle process divides
naturally into two major stages. Stage I,
Incremental Definition, covers the up-
front growth in system understanding,
definition, feasibility assurance, and stake-
holder commitment, leading to a larger
Stage II commitment to a feasible set of
specifications and plans for Incremental
Development and Operations.

Stage I: The duration of Stage I can
be anywhere from one week to five years.
The duration depends on such factors as
the number, capability, and compatibility
of the proposed system’s components and
stakeholders. A small, well-jelled agile-
method, developer-customer team operat-
ing on a mature infrastructure can form
and begin incremental development using
Scrum, eXtreme Programming, Crystal, or
other agile methods in a week. An ultra-
large, unprecedented, multi-mission,
multi-owner SoS project may take up to
five years to progress from a system vision
through sorting out needs, opportunities,
and organizational roles; maturing key
technologies; reconciling infrastructure
incompatibilities; and evolving a feasibili-
ty-validated set of specifications and plans
for Stage II. These specifications and
plans would be at the build-to level for the
initial increment, but only elaborated into
detail for the later increments and the
overall system where there were high-risk
elements to resolve.

As shown in Figure 1, each project’s
activity trajectory will be determined by

the risk assessments and stakeholder com-
mitment decisions at its anchor point
milestone reviews. The small agile project
will follow the negligible-risk arrows at the
bottom of Figure 1 to skip the Valuation
and Architecting phases and begin Stage II
after a short exploratory phase confirms
that the risks of doing so are indeed neg-
ligible. The ultra-large project could, for
example, fund eight small competitive
concept-definition and validation con-
tracts in the Exploratory phase, four larg-
er follow-on Valuation contracts, and two
considerably larger Architecting contracts,
choosing at each anchor point milestone
the best-qualified teams to proceed, based
on the feasibility and risk evaluations per-
formed at each anchor point milestone
review. Or, in some cases, the reviews
might indicate that certain essential tech-
nologies or infrastructure incompatibili-
ties need more work before proceeding
into the next phase.

Stage II: For Stage II, Incremental
Development and Operations, a key deci-
sion that is made at the Development
Commitment review is the length of the
increments to be used in the system’s
development and evolution. A small agile
project can use two- to four-week incre-
ments. However, an ultra-large SoS pro-
ject with a couple dozen system suppliers,
each with a half-dozen subcontractors,
would need increments of up to two years
to develop and integrate an increment of
operational capability, although with sev-
eral internal integration sub-increments.
Some of the non-subsetable hardware sys-
tems would take even longer to develop
their initial increments and would be
scheduled to synchronize their deliveries
with later increments.

The features in each Stage II increment
would be prioritized and the increment
architected to enable what has variously
been called timeboxing, time-certain devel-
opment, or schedule-as independent vari-
able, in which borderline-priority features
are added or dropped to keep the incre-
ment on schedule. It would also be archi-
tected to accommodate foreseeable
changes, such as user interfaces or transac-
tion formats. For highly mission-critical
systems, it would include a continuous
V&V team analyzing, reviewing, and test-
ing the evolving product to minimize
delayed-defect-finding rework.

While the stabilized development team
is building the current increment and
accommodating foreseeable changes, a
separate system engineering team is deal-
ing with sources of unforeseeable change
and rebaselining the later increments’
specifications and plans. Such changes can

include new commercial off-the-shelf
(COTS) releases, previous-increment
usage feedback, current-increment defer-
rals to the next increment, new technolo-
gy opportunities, or changes in mission
priorities. Having the development team
try to accommodate these changes does
not work, as it destabilizes their schedules
and carefully worked-out interface specifi-
cations. At the end of each increment, the
system engineering team also produces for
expert review the feasibility evidence nec-
essary to ensure low-risk, stabilized devel-
opment of the next increment by the
build-to-spec team.

ICM Commitment Milestones:
These milestones correspond fairly closely
with the DoD acquisition milestones CD,
A, B, and C as defined in DoD Instruction
5000.2 [15]. The ICM commitment mile-
stones occur at similar points in the acqui-
sition life cycle but provide additional guid-
ance and rigor for evaluating feasibility
prior to commitment for the next stage.
For example, the ICM DCR milestone
commitment to proceed into Development
based on the validated LCA package (an
Operations Concept description, Require-
ments description, Architecture descrip-
tion, Life-Cycle plan, working prototypes
for high-risk elements, and a Feasibility
Rationale providing evidence of their com-
patibility and feasibility), corresponds fairly
closely with DoD’s Milestone B commit-
ment to proceed into the System
Development and Demonstration phase.

ICM Metaphor: A simple metaphor
to help understand the ICM is to compare
ICM to poker games such as Texas
Hold’em versus the single-commitment
gambling games such as Roulette. Many
system development contracts operate like
Roulette, in which a full set of require-
ments is specified up front, the full set of
resources is committed to an essentially
fixed-price contract, and one waits to see
if the bet was a good one or not. With the
ICM, one places a smaller bet to see
whether the prospects of a win are good
or not and decides to increase the bet
based on better information about the
prospects of success.

What Is Being Concurrently
Engineered in the ICM?
Having addressed the stages, phases, and
milestones in the ICM, let us now look at
the activities. The top row of Figure 1
indicates that a number of system aspects
are being concurrently engineered at an
increasing level of understanding, defini-
tion, and development. The most signifi-
cant of these aspects are shown in Figure

6 CROSSTALK The Journal of Defense Software Engineering October 2007

Using the Incremental Commitment Model to Integrate System Acquisition, Systems Engineering, and Software Engineering

2, an extension of a similar view of con-
currently engineered software projects
developed as part of the RUP [9].

As with the RUP version, it should be
emphasized that the magnitude and shape
of the levels of effort will be risk-driven
and likely to vary from project to project.
In particular, they are likely to have mini
risk/opportunity-driven peaks and valleys,
rather than the smooth curves shown for
simplicity in Figure 2. The main intent of
this view is to emphasize the necessary
concurrency of the primary success-criti-
cal activities shown as rows in Figure 2.
Thus, in interpreting the Exploration col-
umn, although system scoping is the pri-
mary objective of the Exploration phase,
doing it well involves a considerable
amount of activity in understanding
needs, envisioning opportunities, identify-
ing and reconciling stakeholder goals and
objectives, architecting solutions, life-cycle
planning, evaluating alternatives, and
negotiating stakeholder commitments.

For example, if one were exploring the
initial scoping of an SoS for a metropoli-
tan area’s disaster relief, one would not
just interview a number of stakeholders
and compile a list of their expressed mis-
sion needs. One would also envision and
explore opportunities for reusing (parts of)
other metropolitan area disaster relief sys-
tems; for obtaining development funds
from federal agencies; and for applying
maturing virtual collaboration technolo-
gies. In the area of understanding needs,
one would concurrently assess the capabil-
ity and compatibility of existing disaster
relief systems in the metropolitan area to
determine which would need the most
work to re-engineer into an SoS. One
would also assess the scope of authority
and responsibility of each existing system
to determine whether the best approach
would be a truly integrated and centrally
managed SoS or a best-effort interopera-
ble set of systems. And one would explore
alternative architectural concepts for develop-
ing and evolving the system; evaluate their
relative feasibility, benefits, and risks for
stakeholders to review; and negotiate commit-
ments of further resources to proceed into
a Valuation phase.

How Is All This Concurrent
Engineering Synchronized and
Stabilized?
Figure 2 indicates that a great deal of con-
current activity occurs within and across
the various ICM phases. To make this con-
currency work, the anchor-point mile-
stone reviews are the mechanism by which
the many concurrent activities are syn-

chronized, stabilized, and risk-assessed at
the end of each phase. Each of these
anchor-point milestone reviews, labeled at
the top of Figure 2, is focused on devel-
oper-produced evidence – instead of
PowerPoint charts and Unified Modeling
Language diagrams – to help the key
stakeholders determine the next level of
commitment. For the Exploration
Commitment Review (ECR), the focus is
on a review of an Exploration phase plan
with the proposed scope, schedule, deliv-
erables, and required resource commit-
ment by a key subset of stakeholders. The
plan content is risk-driven, and could
therefore be put on a single page for a
small and non-controversial Exploration
phase since there is minimal risk at this
point – a much riskier Exploration phase
would require a more detailed plan outlin-

ing how the risks will be re-evaluated and
managed going forward. For the Valuation
Commitment Review (VCR), the risk-dri-
ven focus is similar – the content includes
the Exploration phase results and a
Valuation phase plan, and a review by all
of the stakeholders involved in the
Valuation phase. The ACR and the DCR
reviews are based on the highly successful
AT&T Architecture Review Board proce-
dures described in [16]. For the ACR, only
high-risk aspects of the Operational
Concept, Requirements, Architecture, and
Plans are elaborated in detail. And it is suf-
ficient to provide evidence that at least
one combination of those artifacts satis-
fies the Feasibility Rationale criteria shown
in Table 1 (similar to the RUP LCO mile-
stone), as compared to demonstrating this
at the DCR for a particular choice of arti-

October 2007 www.stsc.hill.af.mil 7

General/
DoD Milestones

ICM
Life-cycle Phases

Ex p
lor

at
ion

Com
m

itm
en

t

Rev
iew Va

lua
tio

n

Com
m

itm
en

t

Rev
iew Arc

hit
ec

tu
re

Com
m

itm
en

t

Rev
iew Dev

elo
pm

en
t

Com
m

itm
en

t

Rev
iew Ope

ra
tio

ns

Com
m

itm
en

t

Rev
iew Ope

ra
tio

ns

Com
m

itm
en

t

Rev
iew

Valu
at

ion

Arc
hit

ec
tin

g

Dev
elo

pm
en

t 1

Arc
hit

ec
tin

g 2

Ex p
lor

at
ion

Ope
ra

tio
n 1

Dev
elo

pm
en

t 2

Arc
hit

ec
tin

g 3

. .
.

ECR VCR/CD ACR/A DCR/B OCR1/C1

DCR2/B2

OCR2/C2

DCR3/B3

Levels of ActivitySystem

Activity Category

Envisioning opportunities

System scoping

Understanding needs

Goals/objectives
Requirements
Architecting and designing solutions

a. system

b. human

c. hardware

d. software

Life-cycle planning

Evaluation

Negotiating commitments

Development and evolution

Monitoring and control

Operations and retirement

Organizational capability improvement

LLL yyyyyyyLegacyLegacy

OC1
OC2

OC3

OC1
OC3

Figure 2: ICM Activity Categories and Level of Effort

Pass/Fail Feasibility Rationales

Evidence provided by developer andr validated by independent expertst
that if the system is built to the specified architecture, it will do the following:
• Satisfy the requirements: capability, interfaces, level of service, and evolution.
• Support the operational concept.
• Be buildable within the budgets and schedules in the plan.
• Generate a viable return on investment.
• Generate satisfactory outcomes for all of the success-critical stakeholders.
Resolves or covers all major risks by risk management plans.
Serve as basis for stakeholders' commitment to proceed.

Evidence provided by developer and validated by independent experts
that if the system is built to the specified architecture, it will do the following:
• Satisfy the requirements: capability, interfaces, level of service, and evolution.
• Support the operational concept.
• Be buildable within the budgets and schedules in the plan.
• Generate a viable return on investment.
• Generate satisfactory outcomes for all of the success-critical stakeholders.
Resolves or covers all major risks by risk management plans.
Serve as basis for stakeholders' commitment to proceed.

Table 1: Pass/Fail Feasibility Rationale Overview

Systems Engineering

facts to be used for development.
The Operations Commitment Review

(OCR) is different in that it addresses the
often much higher operational risks of field-
ing an inadequate system. In general, stake-
holders will experience a factor of two to 10
increase in commitment level in going
through the sequence of ECR to DCR mile-
stones, but the increase in going from DCR
to OCR can be much higher. These com-
mitment levels are based on typical cost pro-
files across the various stages of the acquisi-
tion life cycle. The OCR focuses on evi-
dence of the adequacy of plans and prepa-
rations with respect to doctrine, organiza-
tion, training, material, leadership, person-
nel, and facilities along with plans, budgets,
and schedules for production, fielding, and
operations.

Taking this to the next level for SoS
development, Figure 3 shows how these
anchor point milestone reviews can be used
to synchronize, stabilize, and manage risks
across multiple supplier/vendor/ strategic
partner activities.

The major SoS-level milestones are
compatible with those of Figure 1, but the
realities of many SoS involve some reinter-
pretation of their nature. Many SoS will
need to include COTS, legacy, or separately
managed systems that are defined and incre-
mentally released on different schedules

than the SoS in Figure 3. The case that is
shown in Figure 3 is one in which for rea-
sons of training, provisioning, or operational
stability, the main upgrades are batched into
major SoS operational releases. Other SoS
cases may require a more continual stream of
upgrades such as security patches or elec-
tronic warfare countermeasures, in which
parts of the SoS are more continuously
evolving versus incrementally evolving.

Since not all the source-selected compo-
nent systems are defined on the same sched-
ule, there will be delays in reconciling them
into a common system architectural frame-
work, requiring an additional SoS rebase-
line/adjustment ACR after the original SoS
ACR used to drive source selection. The
selected suppliers and partners will also
need to participate in negotiating the partic-
ular SoS build-to architecture that will be
baselined at the SoS DCR, and their incre-
mental delivery schedules will not all be
compatible with the incremental delivery
schedule of the SoS in Figure 3.

Some of these suppliers, such as suppli-
er X, will already be operating and will be
feeding incremental upgrade information
into the SoS process during its definition
and development stages. The SoS system
engineers will try to predefine and anticipate
these upgrades as much as possible, but will
have to adapt to changes in supplier X’s
capabilities or interfaces. If these are well-
anticipated, the SoS development team in
Figure 1 will accommodate them. If they are
complex and unanticipated, threatening
destabilization of the build-to-spec team,
the SoS architecting-rebaselining team will
engineer an interim solution if necessary to
keep the operational capability running. If a
more comprehensive solution is needed for
the longer term, the team will rebaseline the
SoS architecture of the next increment to
accommodate supplier X’s new capability.

Changes from strategic partner C and sup-
plier B would be handled similarly.

In some additional cases, particularly for
supplier A who may be developing a longer-
duration, non-subsetable, hardware-inten-
sive IOC, the SoS management will schedule
supplier A’s IOC to synchronize with a later
SoS increment (OCR2 in Figure 3).

Chapter 2 of [7] provides several addi-
tional views of the ICM, including a more
detailed version of Figure 1, some examples
of how different risk patterns create differ-
ent process sequences, a spiral view of the
ICM phases and commitment milestones,
and an illustration of how the concurrent
increment development, increment V&V,
and next-increment rebaselining activities
address the need to simultaneously achieve
high assurance and adaptiveness to rapid
change.

Project Experience With ICM
Principles
The ICM uses the critical success factor
principles to extend several current spiral-
related processes such as RUP, WinWin
Spiral Model, and Lean Development in
ways that more explicitly incorporate
human-system factors into the system life-
cycle process. Some case studies of applying
the ICM to a remotely piloted vehicle, port
security, and commercial medical infusion
pump development are in Chapter 5 of [7].
Another good source of successful projects
that have applied the critical success factor
principles is the 2002-2005 series of Top 5
software-intensive systems projects pub-
lished in CrossTalk [17].

The Top 5 Quality Software Projects
were chosen annually by panels of leading
experts as role models of best practices and
successful outcomes. Table 2 summarizes
each year’s record with respect to usage of
four of the five principles: concurrent engi-
neering, risk-driven activities, and evolution-
ary and iterative system growth (most of the
projects were not specific about stakeholder
satisficing). Of the 20 Top 5 projects in
2002 through 2005, 16 explicitly used con-
current engineering, 14 explicitly used risk-
driven development, and 15 explicitly used
evolutionary and iterative system growth,
while additional projects gave indications of
their partial use. Evidence of successful
results of stakeholder-satisficing can be
found in the annual series of University of
Southern California (USC) e-services pro-
jects using the WinWin Spiral Model as
described in [18]. Since 1998, more than 50
user-intensive e-services applications have
used the WinWin Spiral Model to achieve a
92 percent success rate of on-time delivery
of stakeholder-satisfactory systems.

8 CROSSTALK The Journal of Defense Software Engineering October 2007

Exploration Valuation Develop Operation

Develop Operation

Exploration Develop Operation

Exploration Develop

Exploration Valuation Architecting Develop Operation

Candidate Supplier/

Strategic Partner n

Candidate Supplier/

Strategic Partner n

Candidate Supplier/

Strategic Partner n

Candidate Supplier/

Strategic Partner 1

SoS-Level

Source

Selection

Supplier x

Strategic

Partner C

Supplier B

Supplier A

ACR
1

Rebaseline/

Adjustment ACR
1

DCR
1

OCR
2

ACR
A

DCR
A

OCR
1

{ }
Architecting

OCR
A1

ACR
B

DCR
B

OCR
B1

OCR
B2

ACR
C

DCR
C

OCR
C1

OCR
C2

OCR
x1

OCR
x2

OCR
x3

OCR
x4

OCR
x5

Operation Operation

Valuation Architecting

Valuation Architecting Operation

LCO-type

Proposal

and

Feasibility

Info

Operation

...

...

...

...

......

...

...

...

...

{
Figure 3: Combining SoS Engineering and Component Supplier Processes Using ICM Anchor Point
Reviews

Year Concurrent

Engineering

Risk-

Driven

Evolutionary

Growth

2002 4 3 3

2003 5 4 3

2004 3 3 4

2005 4 4 5

Total

(of 20)

16 14 15

Table 2: Number of Top 5 Projects Explicitly
Using ICM Principles

Using the Incremental Commitment Model to Integrate System Acquisition, Systems Engineering, and Software Engineering

Conclusion
Future transformational, net-centric systems
will have many usage uncertainties and emer-
gent characteristics. Their hardware, soft-
ware, and human factors will need to be con-
currently engineered, risk-managed, and evo-
lutionarily developed to converge on cost-
effective system operations. They will need
to be both highly dependable and rapidly
adaptable to frequent changes. The ICM
described in this article builds on experience-
based critical success factor principles (stake-
holder satisficing, incremental definition,
iterative evolutionary growth, concurrent
engineering, risk management) and the
strengths of existing V, concurrent engineer-
ing, spiral, agile, and lean process models to
provide a framework for concurrently engi-
neering system-specific critical factors into
the systems engineering and systems devel-
opment processes.

Unfortunately, the current path of least
resistance for a government program manag-
er is to follow a set of legacy regulations,
specifications, and standards that select, con-
tract with, and reward developers for doing
almost the exact opposite. Most of these
legacy instruments emphasize sequential ver-
sus concurrent engineering; risk-insensitive
versus risk-driven processes; early definition
of poorly understood requirements versus
better understanding of needs and opportu-
nities; and slow, unscalable contractual mech-
anisms for adapting to rapid change.

This article has provided a mapping of
the ICM milestones to the current DoD
5000.2 acquisition milestones that shows that
they can be quite compatible. It also shows
how projects could be organized into stabi-
lized build-to-specification increments that
fit current legacy acquisition instruments,
along with concurrent agile change-adapta-
tion and V&V functions that need to use
alternative contracting methods. Addressing
changes of this nature will be important, par-
ticularly if organizations are to realize the
large potential value offered by investments
in future net-centric SoS. However, as mili-
tary planners have had to recognize that
there is no longer a forward edge of the bat-
tle area marking the boundary between blue
and red forces, acquisition and financial plan-
ners will need to recognize that there is no
longer a cutover-type milestone marking the
boundary between research and develop-
ment and operations and maintenance.
Instead, future life cycles will need to adapt
to continuous incremental and evolutionary
acquisition and development.u

References
1. Krygiel, A. “Behind the Wizard’s

Curtain.” Command and Control

Research Program Publication Series,
1999.

2. Highsmith, J. Adaptive Software Devel-
opment. New York: Dorset House,
2000.

3. Beck, K. Extreme Programming Ex-
plained. Reading, MA: Addison Wesley,
1999.

4. Boehm, B. “Unifying Software Engi-
neering and Systems Engineering.”
Computer Mar. 2000: 114-116.

5. Clements, P. et al. Documenting Soft-
ware Architectures. Addison Wesley,
2002.

6. Baldwin, K. “DoD Software Engineer-
ing and System Assurance: New Organ-
ization, New Vision.” Washington:
DUSD 2007 <http://csse.usc.edu/
events/2007/ARR/presentations/Bald
win.ppt>.

7. Pew, R.W., and A.S. Mavor. Human-
System Integration in the System
Development Process: A New Look.
National Academy Press, 2007.

8. Royce, W.E. Software Project
Management. Addison Wesley, 1998.

9. Kruchten, P. The Rational Unified
Process. Addison Wesley, 1999.

10. Boehm, B. “Anchoring the Software
Process.” Software July 1996: 73-82.

11. Boehm, B., and J. Lane. “21st Century

Processes for Acquiring 21st Century
Systems of Systems.” CrossTalk May
2006 <www.stsc.hill.af.mil/crosstalk>.

12. Rechtin, E. Systems Architecting.
Prentice Hall, 1991.

13. Royce, W.W. “Managing the Develop-
ment of Large Software Systems:
Concepts and Techniques.” 1970
WESCON Technical Papers. v.~14.
Western Electronic Show and
Convention, Los Angeles, CA., Aug. 25-
28, 1970.

14. Patterson, F. “System Engineering Life
Cycles: Life Cycles for Research,
Development, Test, and Evaluation;
Acquisition; and Planning and
Marketing.” Handbook of Systems
Engineering and Management. Ed. A.
Sage and Rouse. W. Wiley, 1999: 59-111.

15. DoD. “Operation of the Defense
Acquisition System.” DoD Instruction
5000.2: DoD, 2003.

16. Marenzano, J., et al. “Architecture
Reviews: Practice and Experience.”
IEEE Software Mar./Apr. 2005: 34-43.

17. CrossTalk. “Top Five Quality
Software Projects.” Jan. 2002, July 2003,
July 2004, Sept. 2005.

18. Boehm, B., et al. “Using the WinWin
Spiral Model: A Case Study.” Computer
July 1998: 33-44.

October 2007 www.stsc.hill.af.mil 9

About the Authors

Jo Ann Lane is currently
a principal at the USC
Center for Systems and
Software Engineering
conducting research in
the area of SoS engineer-

ing. In this capacity, she is currently
working on a cost model to estimate the
effort associated with SoS architecture
definition and integration. She is also a
part-time instructor, teaching software
engineering courses at San Diego State
University. Prior to this, Lane was a key
technical member of Science Appli-
cations International Corporation’s Soft-
ware and Systems Integration Group
responsible for the development and
integration of software-intensive sys-
tems and SoS.

USC
Center for Systems and
Software Engineering
941 W 37th Place
SAL RM 328
Los Angeles, CA 90089-0781
E-mail: jolane@usc.edu

Barry Boehm, Ph.D., is
the TRW professor of
software engineering and
director of the Center
for Systems and Software
Engineering at the Uni-

versity of Southern California (USC).
He was previously in technical and man-
agement positions at General Dynamics,
Rand Corporation, TRW, and the
Defense Advanced Research Projects
Agency, where he managed the acquisi-
tion of more than $1 billion worth of
advanced information technology sys-
tems. Boehm originated the spiral
model, the Constructive Cost Model,
and the stakeholder WinWin Spiral
Model approach to software manage-
ment and requirements negotiation.

USC
Center for Systems and
Software Engineering
941 W 37th Place
SAL RM 326
Los Angeles, CA 90089-0781
E-mail: boehm@usc.edu

As you are probably aware, the GIG is a
complex, ongoing effort intended to

integrate all information systems, services,
and applications within the DoD and the IC
into a seamless, reliable, and secure network
that will support horizontal information flow
and net-centric warfare.

The GIG represents a different way of
thinking about delivering capabilities, a way
of thinking that can cope with the uncertain-
ties we face in the world today. In the past,
missions focused on narrow objectives
against known adversaries and were orga-
nized with tightly managed organizational
responsibilities across the DoD and IC con-
stituencies. Today, adversaries are shadowy
and shifting, objectives are far-reaching, and
new responsibilities link our organizations at
all levels. The DoD and IC networks built in
the past evolved into stovepipes, tied to mis-
sions and organizations that now are forced
to adapt to a more fluid world. The GIG
confronts uncertainty, inherent in today’s
world, with the agility that comes from inter-
connected, interoperable solutions that can
be tailored to today’s missions and objectives.
Making the GIG a reality requires breaking
out of stovepipes and solving interoperabili-
ty and performance issues at the enterprise
level. We have approached the problem of
building, populating, operating, and protect-
ing the GIG by applying systems engineering
discipline to the complex set of communica-
tions systems, information systems, services,
and applications that make up the GIG.
Systems engineering as a discipline provides
us with the techniques to manage the com-
plexity of systems.

Enterprise-Wide Systems Engineering
(EWSE), as applying systems engineering to
the GIG at this level is known, can only suc-
ceed by properly focusing the effort. EWSE
utilizes interoperability and end-to-end per-
formance as the criteria to determine what is
within scope. Enterprise decisions for these
requirements are then documented and
enforced in the design of GIG component
systems, laying the groundwork for the GTF.

The GTF is the configuration-managed, syn-
chronized set of all authoritative technical
guidance required for planning, developing,
acquiring, and implementing an interoperable
and secure GIG.

Background
With origins in a wide range of component
systems procured to support autonomous
agencies and services, the GIG is more accu-
rately an organizing construct than an actual
system. Its legacy components vary in terms
of performance, storage, and process, and
they must continue to support their existing
user communities even as they become part
of the GIG. While many individual compo-
nent systems are unknown at the enterprise
level, the GIG’s component set – as well as
the components themselves – will evolve to
reflect participant groups’ capabilities and
financial priorities. The challenge is to estab-
lish a process that brings these disparate
components together into a single entity that
meets the needs of all users.

As GIG component systems are
designed, built, and funded by member orga-
nizations, it is necessary to deductively estab-
lish the functions, protocols, and data models
required for their interoperability and perfor-
mance. Such an investment will benefit all
GIG users.

Scope of the Effort
The Assistant Secretary of Defense, Net-
works and Information Integration
(OASD[NII]/DoD Chief Information
Officer) tasked the Defense Information
Systems Agency to lead an Enterprise
Documentation Framework Working Group
that would apply systems engineering prac-
tices to create the GTF. The GTF provides
structure and traceability for all GIG docu-
mentation in a manner similar to that of a
document tree. The GTF is based on and
traceable to operational needs derived from
national and DoD strategic guidance and
direction. It includes enterprise-level GIG
documentation (GIG capabilities; activities;
technical requirements, including standards

and specifications; and the GIG Architec-
ture) and other GIG-related technical docu-
mentation1.

Applying systems engineering at the
enterprise level to support development of
the GTF must start with the GIG’s vision as
outlined in the Net-Centric Operations
Environment Joint Capability Document2.
Once top-level requirements are defined to
identify the necessary functionality, this func-
tionality can be decomposed into system seg-
ments and sub-segments.

Top-level requirements have been
decomposed into three areas – general, enter-
prise management, and Information
Assurance – and flow down to requirements
at the segment level. These segments include
transport, services, applications, computing
infrastructure, and enterprise operations.

Segment and sub-segment requirements
are specified as needed for interoperability
and performance according to the top-level
requirements, which can be traced from GIG
capabilities and requirements to segment and
sub-segment requirements. Sub-segment
requirements, needed to achieve interoper-
ability and end-to-end performance, are
often the specification of protocols or mech-
anisms.

Figure 1 illustrates the relationship
between top-level requirements, segment-
level requirements, and sub-segment require-
ments for a transport segment example.

Systems Engineering Challenges
In addition to scope, the GTF addresses a
number of systems engineering challenges
involving the following:
• Focus. All requirements for achieving

the GIG capabilities – including what is
currently feasible and what requires fur-
ther development – must be specified by
the GTF to ensure that programs under-
stand the needed transitions. Programs,
services, and agencies responsible for
existing GIG component systems are
then responsible for developing transi-
tion plans that reflect the requirements of
the GTF.

Systems Engineering for the Global Information Grid:
An Approach at the Enterprise Level

Because the numerous United States Department of Defense (DoD) and Intelligence Community (IC) networks were originally
built to serve many different constituencies, making the Global Information Grid (GIG) a reality requires solving interoper-
ability and performance issues at the enterprise level. This will be accomplished through the use of systems engineering – a dis-
cipline whose techniques manage the complexity of systems from abstraction to decomposition. The GIG Technical Foundation
(GTF) addresses a number of systems engineering challenges involving focus, evolution, coverage, and applicability.

Patrick M. Kern
Deputy to the Assistant Secretary of Defense, Networks and Information Integration/

Department of Defense Chief Information Officer

10 CROSSTALK The Journal of Defense Software Engineering October 2007

Systems Engineering for the Global Information Grid: An Approach at the Enterprise Level

• Evolution. Many aspects of the GIG’s
long-term vision, including pervasive
mobility, ad-hoc network connection,
efficient resource use, and dynamic
resource allocation/management are not
achievable through use of current tech-
nologies. Long-term GIG design must
not be limited to requirements dependent
on current technology, but include provi-
sions for emerging and future technolo-
gies as well.

• Coverage. As mentioned earlier, the
GIG is made up of a wide variety of
components, many of which are
unknown at the enterprise level.
Components will be added and removed
as organizational needs evolve, and the
components themselves will also evolve.
As a result, requirements for the GIG
must be specified in terms of component
type rather than for specific components.
Requirements must also be defined for
the set of systems needed to meet GIG
capabilities rather than for those appro-
priate only for existing/planned systems.

• Applicability. Since GIG users will
operate in a variety of environments,
requirements need not apply to all envi-
ronments or modes. Specific domains of
applicability must be defined which work
in concert to provide overall enterprise
capabilities. For example, fixed users are
well connected and can reliably reach
centralized data centers. The fixed users
are not severely constrained in power,
memory, storage, and processing.
Examples of fixed user modes are camps,
posts, stations, and bases served by the
Defense Information System Network.
Advantaged tactical users operate in a
slowly changing environment subject to
high latency and limitations on band-
width that may constrain reach-back to
centralized data centers. The advantaged
tactical users are not severely constrained
in power, memory, storage, and process-
ing. Examples of advantaged tactical user
modes are tactical operations centers and
Navy ships. Disadvantaged tactical users
operate in a highly dynamic topology,
with limited and sometimes no fixed
infrastructure, subject to disruption in
communications and with severe con-
straints on one or more of power, mem-
ory, storage, and processing. An example
of disadvantaged tactical user mode is a
Mobile Ad-Hoc Network formed by
vehicles and dismounted soldiers.

Assembling the GTF
The GTF is intended to address all require-
ments relating to the GIG’s long-term
vision, even those not achievable through
the use of currently available technologies,

protocols, and mechanisms. Sub-segment
requirements are divided into two categories
– current requirements, which are achievable
using current technology, and maturing
requirements, which rely on emerging and
future technologies.

Current requirements are testable and
will be enforced in the design of GIG com-
ponent systems. By contrast, maturing
requirements are used to document tech-

nologies needed to achieve GIG capabilities,
verify the feasibility of achieving GIG capa-
bilities and provide insight on research need-
ed to meet the GIG vision.

Occasionally, use of a technology, mech-
anism, or protocol that does not satisfy GIG
requirements is sanctioned if no other
resource is available. In these instances, a cur-
rent requirement is defined for the existing
technology, and a maturing requirement is

October 2007 www.stsc.hill.af.mil 11

Top-Level

Requirements

Cross-Segment

Information

Assurance

Cross-Segment

Enterprise

Management

Transport

Segment-Level

Requirements

Transport

Services

Routing

Quality of

Service

Transport

Information

Assurance

Network

Management

Sub-Segment-Level Requirements (Current and Maturing)

A

A

Identify Technical Issue

Technology Satisfies

All Appropriate

Requirements

No Technology Satisfies

Sufficient Appropriate

Requirements

Best Available

Technology Satisfies

Some Appropriate

Requirements

Select Technology for

Current Requirement

Identify Maturing Requirement

Citing Immature Technology or

Technology Gap

Document Current Requirement

for Available Technology

Identify Maturing Requirement

Citing Immature Technology or

Technology Gap

GIG Programs, Held to

Compliance to Current

Requirements

Technologies Needed for Maturing

Requirements Worked by

Scientific, Technical, and

Acquisition Research Community

Assess All Available

Technology Against

Segment-Level

Requirements

Figure 1: Transport Segment Example Illustrating the Relationship Between Requirements

Figure 2: Process for Assessing Technologies for Inclusion in the GTF

Systems Engineering

defined for the needed technology. For
example, inter-domain routing today would
use border gateway protocol version 4 as a
current requirement. A new protocol to sup-
port pervasive mobility is defined as a matur-
ing requirement.

At all phases of the process of assem-
bling the GTF, stakeholders and subject mat-
ter experts participate in working groups to
assess technologies and determine the appro-
priate match for current and maturing
requirements. Figure 2 (see page 11) illus-
trates the process used to assess technologies
for inclusion in the GTF.

Community Role in GTF
Development
Before the establishment of the GTF, differ-
ent organizations attempted to define the
GIG in separately developed technical, poli-
cy, and guidance documents. This resulted in
more than 7,000 pages of documentation,
which, although well written, contained gaps,
overlaps, and inconsistencies that reflected
the GIG’s fragmented origins in component
systems originally intended to function inde-
pendently. Once it was realized that the
emerging GIG documentation did not have
the technical maturity to meet end-to-end
interoperability and performance compliance
standards, members of the GIG user com-
munity began to develop baselines against
which its individual components could be
measured.

Today’s GTF is a set of source docu-
ments drawn across the GIG community,
along with governing statements for GIG
development, providing portfolio and pro-
gram managers with clear guidance on how
to implement net-centricity and end-to-end
interoperability throughout the acquisition
life cycle. It includes authoritative source doc-
uments that define the strategic guidance,
operational context, operational capabilities,

GIG capabilities, GIG activities, and techni-
cal direction needed to take the GIG through
the following timeframes: near (0-2 years),
mid (3-7 years), and far (8+ years).

The GTF also contains governing state-
ments extracted from these source docu-
ments that more concisely describe the
GIG and are traceable throughout the
GIG’s Enterprise Document Framework.
All content is stored and managed in a
DOORS3 requirements database to facili-
tate requirements management and config-
uration control.

Compliance
By developing this integrated approach to
compliance assessment that aligns current
processes and provides an entry point to the
Net-Ready Key Performance Parameter evo-
lution, the GTF does the following:
• Allows program managers to self-assess

individual programs.
• Applies consistently to all programs at all

levels of oversight.
• Ensures high confidence in end-to-end

interoperability and performance compli-
ance at the enterprise level.

Policy has also been revised to direct all com-
pliance to the GTF.

Conclusion
The GIG is an ambitious undertaking that is
fundamental to net-centric warfare. We have
established an enterprise process to apply
systems engineering discipline to the deci-
sions that need to be made to make the GIG
a reality. The product of the enterprise
approach is a GTF, a new approach to GIG
policies and a set of processes for compli-
ance to the GTF.

While the GTF is still an evolving effort,
the requirements in the GTF have been
flowed into program requirements docu-
ments, ensuring more robust interoperability

and performance as those programs come
online as part of the GIG. The approach we
are putting in place will allow us to build,
populate, operate and protect the GIG to
meet the challenges of today’s world.u

Acknowledgements
The author would like to recognize the con-
tributions and significant input to this article
by Ms. Julie Tarr, Senior Systems Engineer,
and Mr. Tony Dessimone, Senior Scientist.

Notes
1. Some portions of the GTF are not pub-

licly released.
2. <www.jcs.mil/j6/netcentric.html>.
3. DOORS is an acronym for Dynamic

Object-Oriented Requirements System (a
Quality Systems and Software, Inc.,
Quality Systems and Software database
management system).

12 CROSSTALK The Journal of Defense Software Engineering October 2007

About the Author

Patrick M. Kern is the
NII Net-Centric Systems
Engineer leading the in-
tegration of transforma-
tional programs for
OASD/NII. He is re-

sponsible for end-to-end system engi-
neering for the GIG. Kern has a bache-
lor’s degree in aerospace engineering
from the University of Michigan and a
master of business administration in
engineering management from the
University of Colorado.

OASD/NII
3D174 Pentagon
Phone: (703) 697-4704
E-mail: patrick.kern@osd.mil

Air Force Center for Systems Engineering
Reference Library
www.afit.edu/cse/
The Reference Library provides links to key systems engineering
policies, guides, industry standards, important historical sys-
tems engineering documents, and other related documents.

The United States Army Information
Systems Engineering Command
www.hqisec.army.mil/
The United States Army Information Systems Engineering
Command has the primary mission of system engineering and
integration of information systems for the U.S. Army. Their
mission includes the design, engineering, integration, develop-

ment, sustainment, installation, testing, and acceptance of
information systems. It provides matrix support to the program
executive officer and program manager structure for systems
engineering and integration of assigned information systems.

Systems and Software Engineering
Organization Systems Engineering Plan
www.acq.osd.mil/se/as/sep.htm
The Software Engineering Plan is a living document that cap-
tures a program’s current and evolving systems engineering
strategy and its relationship with the overall program manage-
ment effort. Its purpose is to guide all technical aspects of a pro-
gram, and provides a comprehensive, integrated technical plan
to achieve its objectives.

WEB SITES

Of course we need a ConOps!
Admittedly, system development

programs can be overwhelmed by the
number and variety of required documen-
tation. There are system specifications,
subsystem specifications, discipline
requirements specifications (hardware,
software), discipline design documents
(hardware, software), interface require-
ment specifications (IRS), interface con-
trol documents (ICD), test plans, proce-
dures, reports, and a multitude other doc-
uments that capture what system is to be
built, how the system is built, and how the
system is tested. There is, however, a criti-
cally important engineering document that
should be the key document developed at
the beginning of the system development
and maintained throughout the engineer-
ing life cycle. What is this critically impor-
tant engineering document, the ConOps?
It is key to successfully developing an
operational system. This article covers
ConOps – what it is, what it is not, and its
contents. I will also show the importance
of the ConOps in three situations dealing
with four Air Force programs: the Over-
the-Horizon Backscatter (OTH-B) Radar,
the Seek Score Radar Bomb Scoring
System, and the PAVE1 Phased Array
Warning System (PAWS) Ballistic Missile
Early Warning System (BMEWS).

The ConOps is a descriptive docu-
ment usually created by the future opera-
tional users of the system. It details what
the system is going to be used for, what
other systems it will be used with and
communicate with, what kind of data and
information it requires and supplies, how
it is going to be used by the operational
user, who is going to be the operational
user, how it is going to get to where it is
going to be used, and how it is going to be
maintained. In the past, the document has
been called a variety of titles (e.g.,
ConOps, CONOPS, and Mission Needs
Statement); regardless, in this article it will
be called the ConOps. In my many years
in the Air Force and in industry, I have
found the ConOps to be one of the most

difficult engineering documents to write.
Why? The ConOps is a description on
how the system is going to be used. It is
not an engineering document that details
system requirements or describes the
desired design of the system. The
ConOps should be written devoid of sys-
tem requirement statements and engineer-
ing design. This is the cornerstone docu-
ment that drives the follow-on engineering
documents, where requirements flow out
of the ConOps into the system-level
requirements specifications during the sys-
tem requirements analysis life-cycle phase.
The difficulty is keeping the requirements
and design from creeping into the
ConOps. The ConOps should not con-
strain the engineering process and its cre-
ativity in solving the operational needs of
the operational users. At times, however,
writing the ConOps creates a dilemma for
the operational command who wish to
dictate not only how the system is to be
used, but how the system should be built.
Who should write this critically important
document, the ConOps?

Who Should Author the
ConOps?
Naturally, the optimum authors of the sys-
tem should be the operational users of the
system. This poses a problem for a number
of reasons. In some instances with the
extensively long procurement and system
development life-cycle time frames, the
operational users of the system may not
even be old enough to be in the military or
in the employment pool when the ConOps
needs to be initially written. Then you have
the current operational users who are
extremely busy performing their opera-
tional duties and have very little time to
devote to writing a detailed ConOps. Some
operational commands have organizations
within the command to generate ConOps
and future systems requirements to meet
their command’s operational missions.
These organizations usually have a staff
mix of recent operational users and engi-
neers. In my experience, these folks are usu-

ally very passionate over improving their
organization’s capability in the field. They
want to make it much, much easier for their
future operational users – their comrades in
arms. It is, however, difficult to write the
ConOps without trying to drive the
requirements or design of the system.
Operational commands and product divi-
sions that procure the systems usually hire
engineering organizations like MITRE or
system engineering firms to assist in devel-
oping the required engineering documents,
and yes, even a ConOps. Again in my expe-
rience the ConOps generated by these
organizations include system requirements
and engineering design influences. But the
operational users will contend that if they
don’t have the system design, it is difficult
for them to write the ConOps. Likewise,
not having the ConOps is a constraining
factor in coming up with the engineering
requirements and design – the classic chick-
en or the egg dilemma.

What Is a ConOps?
The Institute of Electrical and Electronics
Engineers (IEEE) Std. 1362-1998 Guide
for Information Technology – System
Definition – ConOps Document Descrip-
tion provides user organizations a way to
describe their missions and organizational
objectives to contractors from an integrat-
ed systems point of view. The document
abstract reads as follows:

The format and contents of a con-
cept of operations (ConOps) doc-
ument are described. A ConOps is
a user-oriented document that
describes system characteristics for
a proposed system from the users’
viewpoint. The ConOps document
is used to communicate overall
quantitative and qualitative system
characteristics to the user, buyer,
developer, and other organization-
al elements (for example, training,
facilities, staffing, and mainte-
nance). It is used to describe the
user organization(s), mission(s),

ConOps:The Cryptex to Operational
System Mission Success

As engineering firms start to design any number of systems for a variety of customers and end users, the number and vari-
ety of system documentation can be overwhelming. Among this pile of documentation, the Concept of Operations (ConOps)
stands out as a critically important engineering document that should be created at the beginning of the system development
and maintained throughout the engineering life cycle. This article discusses the ConOps and if it truly is necessary in addi-
tion to all of the other documentation available.

Alan C. Jost
Raytheon

October 2007 www.stsc.hill.af.mil 13

Systems Engineering

14 CROSSTALK The Journal of Defense Software Engineering October 2007

and organizational objectives from
an integrated systems point of
view. [1]

The purpose of the ConOps is to provide
the user community a vehicle for describing
their operational needs that must be satis-
fied by the system under development.

The ConOps approach provides an
analysis activity and a document that
bridges the gap between the user’s needs
and visions and the developer’s technical
specifications. In addition, the ConOps
document provides the following:
• A means of describing a user’s opera-

tional needs without becoming bogged
down in detailed technical issues that
shall be addressed during the systems
analysis activity.

• A mechanism for documenting a sys-
tem’s characteristics and the user’s oper-
ational needs in a manner that can be
verified by the user without requiring
any technical knowledge beyond that
required to perform normal job func-
tions.

• A place for users to state their desires,
visions, and expectations without
requiring the provision of quantified,
testable specifications. For example, the
users could express their need for a high-
ly reliable system and their reasons for
that need without having to produce a
testable reliability requirement. (In this
case, the user’s need for high reliability
might be stated in quantitative terms by
the buyer prior to issuing a request for
proposal [RFP], or it might be quanti-
fied by the developer during require-
ments analysis. In any case, it is the job
of the buyer and/or the developer to
quantify users’ needs [and not the
responsibility of the user even though
they are usually very anxious to provide
the ole 0.99999 reliability number
instead of highly reliable.])

• A mechanism for users and buyer(s) to
express thoughts and concerns on pos-
sible solution strategies. In some cases,
design constraints dictate particular
approaches. In other cases, there may
be a variety of acceptable solution
strategies. The ConOps document
allows users and buyer(s) to record
design constraints and the rationale for
those constraints as well as indicate the
range of acceptable solution strate-
gies.[1]

Structure of the ConOps
By examining the IEEE’s suggested

ConOps structure, you can see how it is ori-
ented around the operational user’s needs.
It is not a simple document to write and
complete without having system require-
ments and design creep into the document;
try to describe something as common as
your next dream car without including sys-
tem requirements or design in your dream
car ConOps [1]. As you can see, the con-
tents of an IEEE compliant ConOps doc-
ument is defined in Section 4 of the IEEE
Standard 1362-1998 – go ahead try to write
one for your new dream car.
• Section 1: Scope.
• Section 2: References.
• Section 3: Definitions.
• Section 4: Elements of a ConOps doc-

ument.
o 4.1 Scope (Clause 1 of the ConOps

document).
o 4.2 Referenced documents (Clause 2

of the ConOps document).
o 4.3 Current system or situation

(Clause 3 of the ConOps docu-
ment) .

o 4.4 Justification for and nature of
changes (Clause 4 of the ConOps
document).

o 4.5 Concepts for the proposed sys-
tem (Clause 5 of the ConOps docu-
ment).

o 4.6 Operational scenarios (Clause 6
of the ConOps document).

o 4.7 Summary of impacts (Clause 7
of the ConOps document).

o 4.8 Analysis of the proposed system
(Clause 8 of the ConOps docu-
ment).

o 4.9 Notes (Clause 9 on the ConOps
document).

o 4.10 Appendices (Appendices of
the ConOps document).

o 4.11 Glossary (Glossary of the
ConOps document) [1].

Joint Authorship of the
ConOps
While potentially creating blasphemy, I sug-
gest the critically important ConOps be
drafted by an operational command with as
much operational detail as possible and
included in the RFP during the initial pro-
gram phase. The initial ConOps may have
sections 4.1-4.4, 4.6-4.7, and 4.9-4.11. The
contractor can input section 4.5 and 4.8 in
their proposal. But once the contract is
awarded, all parties should finalize the ini-
tial ConOps for the system under develop-
ment. If it is impossible to eliminate any
requirements or design content from the
ConOps – at least put them in the context
of suggestions. The initial effort in the
engineering life cycle should be for the con-

tractor, product division, support contrac-
tors, and operational command to jointly
update and finalize the draft ConOps
found in the RFP. The result is to move any
system requirements from the ConOps
into the associated system specification and
move further detailed requirements in
lower-level specifications and design docu-
ments. Also, while you want the ConOps to
remain relatively stable and unchanging, the
reality of the engineering life cycle is that it
does take a long time to engineer and devel-
op these systems. In the meantime, the
operational mission may change and, there-
fore, the ConOps should be updated to
reflect the current operational mission.
This should involve all participants in the
engineering and development of the sys-
tem so that at the end of the day, not only
did the contractor build the system right
(i.e. met all the system requirements), but
also built the right system (i.e. met all the
operational user’s needs). As a matter of
fact, these are the three process areas in the
Capability Maturity Model® Integration
(CMMI®) Maturity Level 3 process areas of
Verification (build the system right) and
Validation (build the right system). More to
the point, the Technical Solution process
area has a specific practice for evolving opera-
tional concepts and scenarios [2].

System Requirements Continue
to Reflect the ConOps
So, one of the important aspects of the
engineering process is to make sure that
not only are you meeting the system
requirements, but that those system
requirements actually reflect the opera-
tional mission of the end user. This is
reflected in the CMMI model which was
collaboratively written by some very smart
folks in industry and government [2].
Taken as industry best practices and
extensive lessons learned, one can con-
clude it is extremely important to keep the
ConOps and system requirements rela-
tively in sync throughout the engineering
life cycle. Naturally, one would expect that
the mission operational needs would
match the system requirements main-
tained in the system specification.
However, with extended procurement
schedules and restricted budgets, the need
to field a system that meets some or most
of the requirements sometimes takes over
the procurement process. If the opera-
tional mission changes, this usually results
in changes to the requirements. Of
course, depending on when in the devel-
opment life cycle these changes occur, the
cost of the resulting Engineering Change
Proposal (ECP) can be very expensive

® Capability Maturity Model and CMMI are registered in the
U.S. Patent and Trademark Office by Carnegie Mellon
University.

ConOps:The Cryptex to Operational System Mission Success

October 2007 www.stsc.hill.af.mil 15

and, therefore, the decision is made that
the contract specification is not updated
and the ECPs are not made to the contract
to match the operational requirements. If
many of these mission changes are not
incorporated into the contract via ECP,
you will have the situation where the sys-
tem being built is starting to drift away
from being the system needed by the
operational user. Once the ConOps is
developed, it is critical to make sure that
any changes made to the operational mis-
sion or needs are translated into updated
system requirements. These changes need
to be incorporated into the systems con-
tract. Let us examine an example of where
the system’s operational mission changed
rather dramatically from the original
ConOps, resulting in an operational test
that was less than satisfactory. In addition,
let us examine how creative use of new
ConOps can lead to renewed use of sys-
tems whose original ConOps were no
longer valid but were successfully reused
after readjusting the systems’ original
ConOps.

OTH-B Radar
The Army-Navy Fixed Radar Search 118
(AN/FPS-118) OTH-B was produced for
the Electronic Systems Division of Air
Force Systems Command to fill a vital
need for long-range air surveillance for
North America. Designed by General
Electric in the 1980s, the AN/FPS-118
would provide detection and tracking of
airborne threats at ranges up to 1,800 nau-
tical miles regardless of altitude. The Air
Force’s OTH-B air defense radar system
is, by several criteria, the largest radar sys-
tem in the world. Six OTH-B radars see
far beyond the range of conventional
microwave radars by bouncing their radar
waves off the ionosphere, an ionized layer
about 200 km above the earth. It was
developed over 25 years at a cost of $1.5
billion to warn against Soviet bomber
attacks when the planes were still hun-
dreds of miles from U.S. airspace [3].

With the end of the Cold War, just
months after their deployment, the three
OTH radars on the West Coast were
mothballed, the Central and the incom-
plete Alaskan Systems were cancelled, but
the three radars in Maine were redirected
to counter-narcotics surveillance. In 1994,
Congress directed the Air Force to contin-
ue operating the East Coast OTH-B radar.
The East Coast formally ceased OTH-B
operations in October 1997 [3].

Here was this new radar system that
used the novel idea of using the ionos-
phere as part of a radar system that could
literally see over the horizon to get an

advanced warning of incoming Soviet
Union aircraft that carried cruise missiles.
Because of the novel use of the ionos-
phere as a component of the radar, it took
a long time (25 years) to develop the radar
system and its software. So long in fact,
that in the meantime the Soviet Union col-
lapsed, and the threat of the Soviet air-
craft with cruise missile disappeared; this
occurred literally months before the
OTH-B radar system was to undergo its
operational testing for its operational mis-
sion. The operational command that orig-
inally contracted for the OTH-B Radar
system no longer had an operational need
for the system since the original threat had
disappeared.

The ConOps for the OTH-B Radar
changed dramatically as the operational
usage of the radar system shifted to a
Drug Enforcement Agency (DEA) use of
the radar to monitor potential drug traf-
ficking off the East Coast of the United
States. The Air Force Operational Test
and Evaluation Center (AFOTEC) were
responsible for conducting the operational
tests of the radar, and were using the cur-
rent DEA operational mission ConOps as
the guidance for developing the opera-
tional test procedures. The dramatic shift
of the operational mission from the Air
Force to the DEA occurred almost at the
end of the development life cycle with
minimal chance to change the ConOps
and then go through the ECP process to
change the system specification along with
all the associated changes that would be
needed in the system software. It is impor-
tant to note, the contractor with the prod-
uct division conducts a series of tests to
prove that the system was built right, i.e. it
passes all the system requirements or the
shalls in the system specification, which it
did with flying colors. However, the mis-
sion of the operational testing organiza-
tion is to test the system against the cur-
rent ConOps to make sure the system that
was built was the right system to support
its current operational mission. Naturally,
the operational system test did not go so
well since the ConOps changes could not
generate adjustments to requirements at
the very end of the program. This was not
the contractor’s fault whatsoever, but it
shows an example in the extreme of what
could happen when the changes in the
ConOps are not reflected in the system
requirements on contract. This is a dra-
matic example that is atypical in a discus-
sion on the importance of a current
ConOps in sync with the contract docu-
ments and system requirements. Let us
examine two systems where their original
ConOps were adjusted to allow the sys-

tems renewed and different missions for
the operational command.

Radar Bomb Scoring System
Before sophisticated laser guided bombs,
we used ground directed radar guided
bombing, where the radar system would
direct the flight path of the bomber air-
craft to a drop point in the sky. With com-
puter algorithms using aircraft location,
meteorological inputs, and flight charac-
teristics of the weapon, the operators of
the radar system could indicate to the
pilots and weapons controllers when and
where to release the weapon to hit the
selected targets. The operational com-
mand generated a ConOps that was flexi-
ble enough to allow the reuse of the
Ground Directed Bombing System
(GDBS) to be converted into a Radar
Bomb Scoring System, known as SEEK
SCORE. The AN/TPQ-43 SEEK
SCORE is an automatic tracking radar sys-
tem. This system replaced the antiquated
AN/MSQ-46 and AN/MSQ-77 Bomb
Directing Central systems used during the
Vietnam conflict to guide bombers to
their target. The SEEK SCORE
AN/TPQ-43 can automatically score accu-
racy of simulated bomb releases electron-
ically. Using computer targeting coordi-
nates the SEEK SCORE computer per-
forms a complete ballistics computation
on any type of simulated weapon release
from where the tracked aircraft is at the
release point to where the target is. This
computation provides an accurate miss
distance score. The radar system can also
perform a comparison of aircraft position
in relation to a target to score the naviga-
tion and timing accuracy of an aircrew.
The computerized scoring capabilities of
the SEEK SCORE enhances USAF train-
ing because an aircrew can practice flying
over any type of terrain at any altitude and
practice bomb drops or navigation with-
out ever dropping bombs. This clever
reuse of the existing radar system capabil-
ity was directly related to a ConOps that
was void of design and requirements,
allowing for the reuse of the GDBS sys-
tem to support the new operational use of
the system as a Radar Bomb Scoring
System [4].

PAVE PAWS to BMEWS
Site II
At height of the cold war, the Air Force
built six extremely large phased array radar
systems (see Figure 1, page 16) [5]. One of
the systems known as PAVE (PAVE
PAWS) initially had large phased array
radars located in four locations in the con-

Systems Engineering

16 CROSSTALK The Journal of Defense Software Engineering October 2007

tinental United States, the first of which
was located at Otis Air Force Base on
Cape Cod Massachusetts. The design of
the Cape Cod system had a dual phased
array radar face providing radar coverage
eastward over the Atlantic Ocean. In par-
allel, the same operational command also
needed to upgrade the existing BMEWS
that was located in three places: Thule
Greenland; Fylingdales, United Kingdom;
and Clear Air Force Base, Alaska. The
PAVE PAWS mission was to provide
warning of a Sea-Launched Ballistic
Missile (SLBM) attack against the United
States, while the BMEWS system was
focused on Inter-Continental Ballistic
Missile attack against North America and
United Kingdom. The original BMEWS
system built in the early 1960s really need-
ed to be refurbished and upgraded in the
1980s and 1990s. However, since the oper-
ational command stated its mission needs
in an operational context rather than spe-
cific design and requirements, the contrac-
tor building PAVE PAWS phased array
radars offered to upgrade the current
BMEWS by replacing them with a PAVE
PAWS-like, two-faced, phased array radar
built on the existing BMEWS buildings at
the Thule Site with adjusted tracking and
reporting software. Known as the
BMEWS Radar Upgrade Site I (BMEWS
I), the new radar system provided a dra-
matically enhanced capability. The next
BMEWS site upgraded was the
Fylingdales, United Kingdom site, but
with pyramid-shaped, three-faced phased
array radar system. Again with the
ConOps based on mission needs, the
Fylingdales system could extend the two-
faced, phased array system installed at
Thule to handle the mission at Fylingdales.

To take this concept to the extreme, the
Clear AFB, Alaska BMEWS Site II
(BMEWS II) was recently upgraded by
actually dismantling the PAVE PAWS site
located at Warner-Robbins Air Force Base
and reinstalling the radar system at the
Clear location. Naturally, the processing
equipment and software also needed
upgrading since the system was going
from the SLBM mission to its current mis-
sion, but the same level of flexibility in the
ConOps allowed for extensive reuse of
existing systems for new operational mis-
sions.

Summary
The purpose of this article is to give a
viewpoint on how extremely important
the ConOps document is in the system
engineering and development life cycle of
the system. Not only is the document
important in the beginning of the life
cycle, but it needs to be revisited during
the major lifecycle phase points of the
program to ensure the program remains
on track to build the right system. It is also
important to make sure it is updated to
make sure the ever explosive growth of
technology is continually examined to see
how technology insertion can be accom-
plished at the most economical point of
the engineering life cycle. While the OTH-
B situation is in the extreme, it goes to the
point that there are two aspects of the sys-
tem life cycle: Did the contractor build the
system right (all shalls passed) and did the
contractor build the right system (meets
the operational missions)? We saw two sig-
nificant systems that, by having a mission-
oriented ConOps, allowed the contractors
to bring creativity, flexibility, and cost-sav-
ings reuse of existing systems for new

missions, such as PAVE PAWS for
BMEWS and the new SEEK SCORE
radar bomb scoring system from the old,
existing GDBS.u

References
1. IEEE. IEEE Guide for Information

Technology – System Definition-Con-
cept of Operations Document. Std.
1362-1998. IEEE Electronic Library.

2. Capability Maturity Model Integrated
(CMMI), Systems and Software: V1.1,
Software Engineering Institute, 2001.

3. Air Combat Command. “Fact Sheet:
Over-the-Horizon Backscatter Radar:
East and West.” U.S. Air Force Fact
Sheet <www.acc.af.mil/factsheets/fact-
sheet _print.asp?fsID3863&page=1>.

4. FAS Military Analysis Network <www.
fas.org/man/dod-101/sys/ac/equip/
an-tpq-43.htm>.

5. PAVE PAWS. Wikipedia <http://en.
wikipedia.org/wiki/PAVE_PAWS>.

Note
1. While many people tried to create an

acronym meaning for PAVE, it was
never an acronym for anything, it sim-
ply meant an Air Force Program.

About the Author

Alan C. Jost (Lt. Col.,
U.S. Air Force, retired)
is a senior software pro-
gram manager in the
Raytheon Northeast Soft-
ware Engineering Center

(SWEC), where he works multiple tasks
including the Software Engineering
Program Group Executive Committee
for SWEC’s CMM/CMM Integration
Level 5 sustainment and as a process
engineer on the AutoTrac III Air Traffic
Control Product Line and DD(X)
ExComms Software Cross Product
Team. Jost joined Raytheon after 20
years in the Air Force. He has served in
a variety of line management, process
engineering, and software task manage-
ment roles in SWEC.

Raytheon
MS 3-1-3914
1001 Boston Post RD
Marlborough, MA 01752
Phone: (508) 490-4282
Fax: (508) 490-1366
E-mail: alan_c_jost

@raytheon.com

Clear AFB, AK

ne,

Air

mya

KKK

Beale AFB, CA

hark AFB,

GreenlandGreenlandGreenland

AFB

RAF Flyingdales, UKii

Figure 1: PAVE PAWS and BMEWS Coverage Map

October 2007 www.stsc.hill.af.mil 17

Applying system engineering principles
specifically to the development of

large, complex software systems provides a
powerful tool for process and product
management. This process is called soft-
ware engineering. Dr. Winston Royce,
father of the Waterfall chart, points out
that software engineering was developed
from system engineering, and he argued for
calling the union software system engineer-
ing. Unfortunately, this did not stick, and
software engineering and software system
engineering can be viewed as separate
processes. Software systems have become
larger and more complex than ever. We can
attribute some of this growth to advances
in hardware performance – advances that
have reduced the need to limit a software
system’s size and complexity as a primary
design goal. Microsoft Word is a classic
example: A product that would fit on a
360-kilobyte diskette 20 years ago now
requires a 600-megabyte compact disc.

But there are other reasons for
increased size and complexity. Specifically,
software has become the dominant tech-
nology in many if not most technical sys-
tems. It often provides the cohesiveness
and data control that enable a complex
system to solve problems.

Figure 1 is a prime example of this
concept. In an air traffic control system,
software connects the airplanes, people,
radar, communications, and other equip-
ment that successfully guide an aircraft to
its destination. When the Federal Aviation
Administration systems were upgraded to
automation back in the 1960s, the much
larger systems could handle many more
aircraft over a larger terrain. However,
these larger systems continued to use
much of the earlier 1950s hardware; it was
the software that enabled larger groups of
hardware to work together towards the

common goal of safely delivering an air-
craft from takeoff to landing. Software
provides the system’s major technical
complexity.

Because of this increase in size and complex-
ity, the vast majority of large software sys-
tems do not meet their projected schedule
or estimated cost, nor do they completely
fulfill the system acquirer’s expectations1.
This phenomenon has long been known
as the software crisis [1]. In response to
this crisis, software developers have intro-
duced different engineering practices into
product development.

As large system solutions become
increasingly dependent on software, a sys-
tem engineering approach to software
development can help avoid the problems
associated with the software crisis.

Simply tracking a development pro-
ject’s managerial and technical status –
resources used, milestones accomplished,
requirements met, and tests completed –
does not provide sufficient feedback
about the project’s health. Instead, we
must manage the technical processes as well as
its products. System engineering provides

the tools the technical management task
requires.

The application of system engineering
principles to the development of a comput-
er software system produces activities, tasks,
and procedures called software system engi-
neering (SwSE). Many practitioners consid-
er SwSE to be a special case of system engi-
neering and others consider it to be part of
software engineering. However, it can be
argued that SwSE is a distinct and powerful
tool for managing the technical develop-
ment of large software projects.

This tutorial integrates the definitions
and processes from the Institute of
Electrical and Electronics Engineers
(IEEE) software engineering standards [2]
into the SwSE process.

Systems and System
Engineering
A system is a collection of elements related
in a way that allows a common objective
to be accomplished. In computer systems,
these elements include hardware, soft-
ware, people, facilities, and processes.

System engineering is the practical appli-

Software System Engineering:A Tutorial

Applying system-engineering principles specifically to the development of large, complex software systems provides a pow-
erful tool for process and product management. Software engineering has its early roots in system engineering which is reflect-
ed in their many common terms. This article discusses a merger between system engineering and software engineering called
software system engineering. System engineering looks at controlling the total system development including software.
Software engineering looks at controlling just software development. (System engineers would call software engineering com-
ponent engineering.) The application of system engineering to the development of software gives a large measure of control
software development.

Dr. Richard Hall Thayer
Software Management Training LLC

Portions of this article appeared in Computer,

Apr. 2002. © 2003 IEEE. Reprinted with permis-

sion from Computer, Vol.35, Issue 4, pp. 68-73,

Apr. 2002.

Separation Assurance

• Conflict alert

• Minimum safe altitude

warning

Terminal

(Tower/TRANCON)

Flight Service

Automation System

• Flight plan file

• Weather briefings

• Pilot reports

Air Traffic Management

• Traffic management system

• En route metering

Surveillance

• En route date link

• Airport surveillance

radar (ASR-terminal)

• Next-generation weather

radar

Weather Data

• Central weather processor

• Low-level wind shear alert system

Navigational Aids

• Microwave landing systems

• Very High Frequency

Omni-Directional Radio Range

Tactical Air Navigation Aid

(VORTAC)

Communication

• National airspace data interchange network

• Ground data link

• Tower communication switching system

• Voice switching communication system

VORTAC

X

Credit: Logicon Inc. and Roger U. Fujii

(© 2002 IEEE)

Radio

Transmit

Receiver

Figure 1: Software Ties the System Together

18 CROSSTALK The Journal of Defense Software Engineering October 2007

cation of scientific, engineering, and man-
agement skills necessary to transform an
operational need into a description of a
system configuration that best satisfies
that need. It is a generic problem-solving
process that applies to the overall technical
management of a system development
project. This process provides the mecha-
nism for identifying and evolving a sys-
tem’s product and process definitions.

IEEE Std. 1220-1998 describes the
system engineering process and its appli-
cation throughout the product life cycle
[3]. System engineering produces documents, not
hardware. These documents are associated
with the developmental processes within
the project’s life-cycle model. They also
define the expected process environments,
interfaces, products, and risk management
tools throughout the project.

System engineering involves five func-
tions:
• Problem definition determines the needs

and constraints through analyzing the
requirements and interfacing with the
acquirer.

• Solution analysis determines the set of
possible ways to satisfy the require-
ments and constraints, analyzes the
possible solutions, and selects the opti-
mum one.

• Process planning determines the tasks to
be done, the size and effort to develop
the product, the precedence between
tasks, and the potential risks to the
project.

• Process control determines the methods
for controlling the project and the
process, measures progress, reviews
intermediate products, and takes cor-
rective action when necessary.

• Product evaluation determines the quality
and quantity of the delivered product
through evaluation planning, testing,

demonstration, analysis, examination,
and inspection.
System engineering provides the base-

line for all project development, as well as
a mechanism for defining the solution space.
The solution space describes the product
at the highest level – before the system
requirements are partitioned into the
hardware and software subsystems.

This approach is similar to the soft-
ware engineering practice of specifying
constraints as late as possible in the devel-
opment process. The further into the
process a project gets before defining a
constraint, the more flexible the imple-
mented solution will be.

What Is SwSE?
The term software system engineering dates
from the early 1980s and is credited to Dr.
Winston Royce [4], an early leader in soft-
ware engineering. SwSE is responsible for
the overall technical management of the
system and the verification of the final
system products. As with system engineer-
ing, SwSE produces documents, not com-
ponents. This differentiates it from soft-
ware engineering, which produces com-
puter programs and user manuals.

SwSE begins after the system require-
ments have been partitioned into hard-
ware and software subsystems. SwSE
establishes the baseline for all project soft-
ware development. Like software engi-
neering, it is both a technical and a man-
agement process. The SwSE technical
process is the analytical effort necessary to
transform user operational needs into the
following:
• A software system description.
• Software system requirements and

design specifications.
• Necessary procedures to verify, test,

and accept the finished software prod-

uct.
• Necessary documentation to use,

operate, and maintain it.
SwSE is not a job description. It is a

process that many people and organiza-
tions perform: system engineers, managers,
software engineers, programmers, and –
not to be ignored – acquirers and users.

Software developers often overlook
system engineering and SwSE in their pro-
jects. They consider systems that are all
software or that run on commercial off-
the-shelf (COTS) computers to be just
software projects, not system projects.
Ignoring the systems aspects of software
development contributes to our long-run-
ning software crisis.

SwSE and Software
Engineering
Early in my software engineering career, I
was informed that software engineering
was the engineering of software copied
from the hardware engineers (e.g. electri-
cal engineers, mechanical engineers, and
so forth). I was well acquainted with the
mechanics of software engineering which
made it different from computer science.
The following are examples of what
makes the mechanics of software engi-
neering different than computer science:
• Dividing the project into phases such

as life-cycle development methods.
• Managing software as a separate pro-

ject.
• Using intermediate products (specifi-

cations), e.g., requirements specifica-
tions, design specifications.

• Reviewing, testing, and auditing.
• Using configuration management and

quality (process) assurance.
• Prototyping and the reuse of existing

components.
Later, I had an opportunity to mingle

with a number of engineers from a con-
ventional engineering discipline, and I
asked them about some of our software
engineering processes such as those listed
above. Most had no idea what I was refer-
ring to.

Then by chance, I had an opportunity
to work for a company that used system
engineering. I then realized that I had
found the source of software engineering
processes: It was system engineering.

Both SwSE and software engineering
are technical and management processes,
but software engineering produces soft-
ware components and their supporting
documentation. Specifically, software
engineering is the following:
• The practical application of computer

science, management, and other sci-

A

S n

Det W W tem

SW on

SW m

T

T

SySysystem Engineeririning

SwSE

SW Engineeririning SW Engineering

Separation Assurance

• Conflict alert

• Minimum safe altitude

warning

Terminal

(Tower/TRANCON)

Flight Service

Automation System

• Flight plan file

• Weather briefings

• Pilot reports

Air Traffic Management

• Traffic management system

• En route metering

Surveillance

• En route date link

• Airport surveillance

radar (ASR-terminal)

• Next-generation weather

radar

Weather Data

• Central weather processor

• Low-level wind shear alert system

Navigational Aids

• Microwave landing systems

• Very High Frequency

Omni-Directional Radio Range

Tactical Air Navigation Aid

(VORTAC)

Communication

• National airspace data interchange network

• Ground data link

• Tower communication switching system

• Voice switching communication system

VORTAC

X

Credit: Logicon Inc. and Roger U. Fujii

Software (SW)

Requirements

AnalysisAnalysis

Code andd d

Unit Test

SySystem

Integrated

Testing

(© 2002 IEEE)

(© 2002 IEEE)

Radio

Transmit

Receiver

Figure 2: Engineering Relationships

Software System Engineering: A Tutorial

October 2007 www.stsc.hill.af.mil 19

ences to the analysis, design, construc-
tion, and maintenance of software and
its associated documentation.

• An engineering science that applies the
concepts of analysis, design, coding,
testing, documentation, and manage-
ment to the successful completion of
large, custom-built computer pro-
grams under time and budget con-
straints.

• The systematic application of meth-
ods, tools, and techniques that achieve
a stated requirement or objective for an
effective and efficient software system.
Figure 2 illustrates the engineering

relationships between system engineering,
SwSE, and software engineering.
Traditional system engineering does initial
analysis and design as well as final system
integration and testing.

During the initial stage of software
development, SwSE is responsible for
software requirements analysis and archi-
tectural design. SwSE also manages the
final testing of the software system compo-
nent engineering.

SwSE and Project
Management
The project management process involves
assessing the software system’s risks and
costs, establishing a schedule, integrating
the various engineering specialties and
design groups, maintaining configuration
control, and continuously auditing the
effort to ensure that the project meets
costs and schedules and satisfies technical
requirements [5].

Figure 3 illustrates the management
relationships between project manage-
ment, SwSE, and software engineering.
Project management has overall manage-
ment responsibility for the project and the
authority to commit resources. SwSE
determines the technical approach, makes
technical decisions, interfaces with the
technical acquirer, and approves the final
software product. Software engineering is
responsible for developing the software
design, coding the design, and developing
software components.

The Functions of SwSE
Table 1 lists the five main functions of
system engineering correlated to SwSE,
along with a brief general description of
each SwSE function.

Requirements Analysis
The first step in any software development
activity is to determine and document the
system-level requirements in either a sys-
tem requirements specification (SRS) or a

software requirements specification or
both. Software requirements include capa-
bilities that a user needs to solve a problem
or achieve an objective as well as capabili-
ties that a system or component needs to
satisfy a contract, standard, or other for-
mally imposed document [6].

We can categorize software require-
ments as follows [7]:
• Functional requirements specify functions

that a system or system component
must be capable of performing.

• Performance requirements specify perfor-
mance characteristics that a system or
system component must possess such
as speed, accuracy, and frequency.

• External interface requirements specify
hardware, software, or database ele-
ments with which a system or compo-
nent must interface, or set forth con-
straints on formats, timing, or other
factors caused by such an interface.

• Design constraints affect or constrain the
design of a software system or soft-
ware system component, for example,
language requirements, physical hard-

ware requirements, software develop-
ment standards, and software quality
assurance standards.

• Quality attributes specify the degree to
which software possesses attributes that
affect quality, such as correctness, relia-
bility, maintainability, and portability.
Software requirements analysis begins after

system engineering has defined the acquir-
er and user system requirements. Its func-
tions include identification of all – or as
many as possible – software system
requirements, and its conclusion marks
the established requirements baseline,
sometimes called the allocated baseline.

Software Design
Software design is the process of selecting
and documenting the most effective and
efficient system elements that together
will implement the software system
requirements [8]. The design represents a
specific, logical approach to meet the soft-
ware requirements.

Software design is traditionally parti-
tioned into two components:

2

Project Management

• Planning

• Organizing

• Staffing

• Directing

• Controlling

Software Engineering

• Software design

• Coding

• Unit testing

• Software subsystem

integration

• Problem definition

• Solution analysis

• Process planning

• Process control

• Product evaluation

Figure 3. Management Relationships

Table 1. System Engineering Functions Correlated to SwSE.

System

Engineering

Function

SwSE

Function

SwSE Function Description

Problem

Definition

Requirements

Analysis

Determine needs and constraints by analyzing

system requirements allocated to software.

Solution

Analysis

Software

Design

Determine ways to satisfy requirements and

constraints, analyze possible solutions, and select the

optimum one.

Process

Planning

Process

Planning

Determine product development tasks, precedence,

and potential risks to the project.

Process

Control

Process

Control

Determine methods for controlling project and

process, measure progress, and take corrective

action where necessary.

Product

Evaluation

Evaluate final product and documentation.

Table 2. Process Planning Versus Project Planning.

Project Management Planning

Activities

Determines tasks to be done. Determines skills necessary to do the

tasks.

Establishes order of precedence between

tasks.

Establishes schedule for completing the

project.

Determines size of the effort. Determines cost of the effort (in staff

time).

Determines technical approach to solving

the problem.

Determines managerial approach to

monitoring the project’s status.

Selects analysis and design tools. Selects planning tools.

Determines technical risks. Determines management risks.

Defines process model. Defines process model.

Updates plans when the requirements or

development environment change.

Updates plans when the managerial

conditions and environment change.

SWSE

Verification,

Validation, and

Testing (VV&T)

(© 2002, IEEE)

(© 2002, IEEE)

(© 2002, IEEE)

SwSE Planning Activities

Figure 3: Management Relationships

Project Management

• Planning

• Organizing

• Staffing

• Directing

• Controlling

Software Engineering

• Software design

• Coding

• Unit testing

• Software subsystem

integration

• Problem definition

• Solution analysis

• Process planning

• Process control

• Product evaluation

Figure 3. Management Relationships

Table 1. System Engineering Functions Correlated to SwSE.

System

Engineering

Function

SwSE

Function

SwSE Function Description

Problem

Definition

Requirements

Analysis

Determine needs and constraints by analyzing

system requirements allocated to software.

Solution

Analysis

Software

Design

Determine ways to satisfy requirements and

constraints, analyze possible solutions, and select the

optimum one.

Process

Planning

Process

Planning

Determine product development tasks, precedence,

and potential risks to the project.

Process

Control

Process

Control

Determine methods for controlling project and

process, measure progress, and take corrective

action where necessary.

Product

Evaluation

Evaluate final product and documentation.

Table 2. Process Planning Versus Project Planning.

SWSE

Verification,

Validation, and

Testing (VV&T)

(© 2002, IEE

(© 2002, IEEE)

Table 1: System Engineering Functions Correlated to SwSE

• Architectural design is equivalent to sys-
tem design, during which the develop-
er selects the system-level structure
and allocates the software require-
ments to the structure’s components.
Architectural design – sometimes
called top-level design or preliminary design
– typically defines and structures com-
puter program components and data,
defines the interfaces, and prepares
timing and sizing estimates. It includes
information such as the overall pro-
cessing architecture, function alloca-
tions (but not detailed descriptions),
data flows, system utilities, operating
system interfaces, and storage
throughput.

• Detailed design is equivalent to compo-
nent engineering. The components in
this case are independent software
modules and artifacts.

The methodology proposed here allocates
architectural design to SwSE and detailed
design to software engineering.

Process Planning
Planning specifies the project goals and

objectives and the strategies, policies,
plans, and procedures for achieving them.
It defines in advance what to do, how to
do it, when to do it, and who will do it.

Planning a software engineering pro-
ject consists of SwSE management activi-
ties that lead to selecting a course of
action from alternative possibilities and
defining a program for completing those
actions.

There is an erroneous assumption that
project management performs all project
planning. In reality, project planning has
two components – one accomplished by
project management and the other by
SwSE – and the bulk of project planning
is an SwSE function. (This is not to say
that project managers might not perform
both functions.)

Table 2 shows an example partitioning
of planning functions for a software sys-
tem project.

Process Control
Control is the collection of management
activities used to ensure that the project
goes according to plan. Process control

measures performance and results against
plans, notes deviations, and takes correc-
tive actions to ensure conformance
between plans and actual results.

Process control is a feedback system
for how well the project is going. Process
control asks questions such as the follow-
ing: Are there any potential problems that
will cause delays in meeting a particular
requirement within the budget and sched-
ule? Have any risks turned into problems?
Is the design approach still doable?

Control must lead to corrective action
– either bringing the status back into con-
formance with the plan, changing the
plan, or terminating the project.

Project control also has two separate
components: control that project manage-
ment accomplishes and control that soft-
ware systems engineering accomplishes.
Table 3 shows an example partitioning of
control functions for a software system
project.

VV&T
The VV&T effort determines whether
the engineering process is correct and the
products are in compliance with their
requirements [9]. The following critical
definitions apply:
• Verification determines whether the

products of a given phase of the soft-
ware development cycle fulfill the
requirements established during the
previous phase. Verification answers
the question, am I building the product
right?

• Validation determines the correctness
of the final program or software with
respect to the user’s needs and require-
ments. Validation answers the ques-
tion, am I building the right product?

• Testing is the execution of a program or
partial program, with known inputs
and outputs that are both predicted
and observed for the purpose of find-
ing errors. Testing is frequently consid-
ered part of validation.
Verification and Validation (V&V) is a

continuous process of monitoring system
engineering, SwSE, software engineering,
and project management activities to deter-
mine that they are following the technical
and managerial plans, specifications, stan-
dards, and procedures. V&V also evaluates
the software engineering project’s interim
and final products. Interim products
include requirements specifications, design
descriptions, test plans, and review results.
Final products include software, user man-
uals, training manuals, and so forth.

Any individual or function within a
software development project can do V&V.
SwSE uses V&V techniques and tools to

Systems Engineering

20 CROSSTALK The Journal of Defense Software Engineering October 2007

2

Table 2. Process Planning Versus Project Planning.

Project Management Planning

Activities

Determines tasks to be done. Determines skills necessary to do the

tasks.

Establishes order of precedence between

tasks.

Establishes schedule for completing the

project.

Determines size of the effort. Determines cost of the effort (in staff

time).

Determines technical approach to solving

the problem.

Determines managerial approach to

monitoring the project’s status.

Selects analysis and design tools. Selects planning tools.

Determines technical risks. Determines management risks.

Defines process model. Defines process model.

Updates plans when the requirements or

development environment change.

Updates plans when the managerial

conditions and environment change.

(© 2002, IEEE)

(© 2002, IEEE)

SwSE Planning Activities

Table 2: Process Planning Versus Project Planning

Table 3. Process Control Versus Project Control.

Determines the requirements to be met. Determines the project plan to be

followed.

Selects technical standards to be followed,

for example, IEEE Std. 830 [7].

Selects managerial standards to be

followed, for example, IEEE Std. 1058 [5].

Establishes technical metrics to control

progress, for example, requirements

growth, errors reported, or rework.

Establishes management metrics to

control progress, for example, cost growth

schedule slippage, or staffing shortages.

Uses peer reviews, in-process reviews,

software quality assurance, VV&T, and

audits to determine adherence to

requirements and design.

Uses joint acquirer-developer (milestone)

Re-engineers the software requirements

when necessary.

Replans the project plan when necessary.

reviews and software configuration

management to determine adherence to

cost, schedule, and progress.

(© 2002, IEEE)

SwSE Control Activities Project Management Control

Activites

Table 3: Process Control Versus Project Control

Software System Engineering: A Tutorial

October 2007 www.stsc.hill.af.mil 21

evaluate requirements specifications, design
descriptions, and other interim products of
the SwSE process. It uses testing to deter-
mine if the final product meets the project
requirements specifications.

The last step in any software develop-
ment activity is to validate and test the final
software product against the software
requirements specification and to validate
and test the final system product against
the SRS. System engineering and SwSE are
disciplines used primarily for technical
planning in the front end of the system life
cycle and for verifying that the plans were
met at the project’s end. Unfortunately, a
project often overlooks these disciplines,
especially if it consists entirely of software
or runs on COTS computers.

Summary and Conclusions
Ignoring the systems aspects of any soft-
ware project can result in software that will
not run on the hardware selected or will
not integrate with other software systems.

Conducting software engineering without
conducting SwSE puts a project in jeop-
ardy of being incomplete or having com-
ponents which do not work together,
and/or exceeding the project’s scheduled
budget.

Software engineering and SwSE are
primarily disciplines used in the front end
of the system life cycle for technical plan-
ning and at the very late part of the life
cycle to verify if the plans have been met.
A review of the emphasis in this article
will show that much of the work of plan-
ning and SwSE is done during the top-
level requirements analysis and top-level
design phases. The other major activity of
SwSE is the final validation and testing of
the completed system.

Software engineering principles, activi-
ties, tasks, and procedures can be applied
to software development. This article has
summarized, in broad steps, what is nec-
essary to implement SwSE on either a
hardware-software system (that is primari-
ly software) or on an almost total software
system. SwSE is not cheap, but it is cost
effective.u

References
1. Gibbs, W.W. “Software’s Chronic

Crisis.” Scientific American Sept. 1994:
86-95.

2. IEEE. Software Engineering Stand-
ards Collection. Vol. 1-4. Piscataway:
IEEE Press, 1999.

3. IEEE. Standard for Application and
Management of the System Engineer-
ing Process. Std. 1220-1998, Piscata-
way: IEEE Press, 1998.

4. Royce, W.W. “Software Systems Engi-

neering.” Management of Software
Acquisition. Fort Belvoir, VA: Defense
Systems Management College, 1981-
1988.

5. IEEE. Standard for Software Project
Management Plans. Std. 1058-1998.
Piscataway: IEEE Press, 1998.

6. IEEE. Standard Glossary of Software
Engineering Terminology. Std. 610.
12-1990. Piscataway: IEEE Press,
1990.

7. IEEE. Recommended Practice for
Software Requirements Specifica-
tions. Std. 830-1998. Piscataway: IEEE
Press, 1998.

8. IEEE. Recommended Practice for
Software Design Descriptions. Std.
1016-1998. Piscataway: IEEE Press,
1998.

9. IEEE. Standard for Software Verifi-
cation and Validation. Std. 1012-1998.
Piscataway: IEEE Press, 1998.

Note
1. This article uses the definitions from

IEEE/EIA 12207.0-1997, where
acquirer is used for customer and sup-
plier is used for developer or contrac-
tor.

About the Author

Richard Hall Thayer,
Ph.D., is a senior lectur-
er for Software Manage-
ment Training, LLC, and
is a professor emeritus in
software engineering at

California State University, Sacramento.
He is a retired Air Force colonel and
managed many of the Air Force’s soft-
ware engineering projects. Thayer is also
a consultant in software engineering and
project management and a visiting
researcher and lecturer at the University
of Strathclyde, Glasgow, Scotland. He
has written more than 50 papers and
books on software engineering, includ-
ing two software engineering standards.
Thayer received his doctorate in electri-
cal engineering from the University of
California at Santa Barbara and a mas-
ter’s and bachelor’s in engineering
degrees from the University of Illinois at
Champaign/Urbana.

Software Management
Training, LLC
6540 Chiquita WY
Carmichael, CA 95608
E-mail: r.thayer@computer.org

COMING EVENTS

October 2-3
Department of Homeland Security
Department of Defense Software

Assurance Forum
Tysons Corner, VA

https://buildsecurityin.
us-cert.gov/daisy/bsi/events.html

November 4-7
AYE 2007

Amplifying Your Effectiveness
Phoenix, AZ

www.ayeconference.com/
conference.html

November 8-9
Static Analysis Summit II

Fairfax, VA
https://buildsecurityin.

us-cert.gov/daisy/bsi/events.html

November 12-16
ICSPI 2007
Orlando, FL

www.icspi.com

November 14-16
The 10th IEEE High Assurance Systems

Engineering Symposium
Dallas, TX

http://hase07.utdallas.edu

November 19-21
The 11th International Conference on
Software Engineering and Applications

Cambridge, MA
www.iasted.org/conferences/

cfp-591.html.

May 2008

Systems and Software
Technology Conference
www.sstc-online.org

COMING EVENTS: Please submit coming events that
are of interest to our readers at least 90 days
before registration. E-mail announcements to:
nicole.kentta@hill.af.mil.

Open Forum

There have been many advances in fault
tolerance techniques since the early

work of Brian Randell [1] on safe-state
rollback and Algiradis Avizienis [2] on
multiple code version redundancy. Several
computer languages, including Ada, and
operating systems have support for excep-
tion handling or fault isolation. Improved
software engineering practice, especially
the Software Engineering Institute’s
Capability Maturity Model® (CMM®) and
CMM IntegrationSM (CMMI®), has led to
better data collection and analyses of
faults and failures, thereby improving safe-
ty-critical systems [3, 4].

Unfortunately, there has been little
research on the direct impact of fault tol-
erance techniques on systems engineering
and requirements engineering of systems of
systems (SoS), large systems that, them-
selves, are composed of multiple systems.
The theme of this article is that there are
opportunities to engineer fault tolerance
into complex systems early in the life
cycle, not just focusing on better ways to
encode designs. The point is illustrated
with a discussion of the use of DoDAF
[5, 6, 7]. It is important to keep in mind
that DoDAF is relatively new, with version
1.0 having been released in February 2004.
Given the lead time for the development
of complex systems, it is not reasonable to
expect detailed analyses of DoDAF-based
systems development, much less lessons
learned. Some academic analyses have
been performed; one example of such an
analysis is [8].

Fault Tolerance, Reuse, and
Commercial Off-The-Shelf
(COTS)
It is well known that it is impossible to test
fully all possible execution paths in large
software systems. Therefore, most soft-
ware is deployed with some number of
software errors or faults, which may lead
to system failures in the sense that a failure
occurs when a system does not meet its

specifications of behavior. This situation
occurs regardless of whether the system is
entirely created from new code or, as most
systems are created today, with a heavy use
of reusable components of a variety of
sizes.

Since most large safety-critical systems
are released and deployed with some
(often unknown) number of faults, tech-
niques that allow the effect of faults to be
isolated, to be prevented from propagat-
ing from the subsystem in which they

originate, or to have their effects mini-
mized are often critical. It is especially
important to mitigate any fault that may
occur in COTS products whose internal
structure and potential faults are often
extremely difficult to determine.

Some of the work of Jeffrey Voas [9,
10] has provided important advances in
fault-tolerant systems – the systematic
analysis and prediction of fault propaga-
tion across the boundary of subsystems,
especially COTS products. This clearly
illustrates that software fault tolerance is
intimately connected with reuse and sys-
tems engineering. Of course, many devel-
opers of COTS products are not con-
cerned (or deeply concerned) with fault
tolerance. However, the deployers of such
products within safety-critical systems
must be.

Most large, complex, software systems
developed in the last two decades have
attempted to reuse existing software com-
ponents as much as possible. Reuse has

enormous potential for cost savings, but
poses some issues for development of
fault-tolerant systems because of
unknown quality of some components,
especially COTS products.

Wrappers, bridgeware, or glueware are
often created to provide an interface
between applications, components, data
stores, or systems. Their interfaces and
functionalities are easy to specify during
the requirements gathering period, assum-
ing the high-level interfaces of items that
are to be wrapped are known. David
Corman discussed technologies for wrap-
per generation in a 2001 CrossTalk
article [11].

Unfortunately, wrappers may hide
unknown defects within individual system
components, since the internal interfaces
and quality of COTS products are often
difficult or impossible to determine.

The timing performance of systems
with wrappers can be hard to determine. It
can be difficult to determine if some
actions are atomic (non-interruptible),
which is often a requirement for system
correctness; coordination of atomic
actions across networks is even harder to
guarantee. There are some fault-tolerance
issues that are caused directly by improper
use of wrappers which are discussed
briefly when (Operational View) OV-6c
diagrams are described later in this article.

Recovery blocks (areas of safe code)
and redundancy are likely to be useful for
functions, procedures, or objects that
reside on a single system. Wrappers,
bridgeware, or glueware are highly likely to
have to function across two or more
servers, depending on where the applica-
tions being glued reside. The applications
themselves may require the use of several
different servers. Hence, it can be difficult
to find a safe state where all servers are
consistent. Guaranteeing coordinated
atomic actions is difficult, but essential, if
fault tolerance can be achieved.

It is difficult to provide fault-tolerance
for COTS products because generally

Issues Using DoDAF to Engineer Fault-Tolerant
Systems of Systems

It is unreasonable to expect all portions of complex, safety-critical, net-centric systems to always function properly. Hence,
fault-tolerance techniques are necessary to ensure overall satisfactory system operation. This article considers some aspects of
the relatively new Department of Defense Architectural Framework (DoDAF) in the systems engineering of complex sys-
tems that can be used to improve fault tolerance. It also describes some apparent deficiencies of DoDAF from a fault toler-
ance perspective and provides some suggestions for improvement.

Dr. Ronald J. Leach
Howard University

22 CROSSTALK The Journal of Defense Software Engineering October 2007

“Fault tolerance is
critical, and support

for it is likely to
become more important

in the future.”

October 2007 www.stsc.hill.af.mil 23

there is little knowledge of the internal
interfaces of the product. Exception han-
dling is usually done in wrappers and
operating systems. Fault tolerance in oper-
ating systems can be helpful here if the
COTS product is running on a single serv-
er. If the COTS product requires running
on multiple servers, the situation becomes
much more complex.

Systems created from COTS products
often have predictable initial cost,
although maintenance costs may be much
larger than expected for long-lived sys-
tems, as Voas [10] and Leach [12] suggest.
Additional problems occur if the schedule
of releases of new versions of a COTS
product is out of phase with the system to
be deployed or the vendor of the COTS
product stops product support during the
desired system’s life cycle.

The most extreme case of reusing
software is new systems that are them-
selves composed of systems. These SoS
will exhibit most of the difficulties indi-
cated earlier, and to a much greater extent
than what is typical of the simpler cases
described previously. Systems too large to
run on a single server need redundant
hardware to provide continuity of opera-
tion if failure occurs; redundancy may also
be required on a single-server system.

SoS will exhibit most of the difficulties
indicated earlier, and, in many net-centric
systems, it is impossible to allocate a set of
hardware to preserve system state in the
event of an unforeseen fault. Hence these
systems, especially safety-critical ones, are
greatest in need of systems development
processes that support and encourage
fault tolerance.

Systems Engineering With
DoDAF
DoDAF was developed to help with the
design of complex SoS. DoDAF is
designed to work with several types of
software development methodologies,
notations, and Computer Assisted
Software Engineering (CASE) tools. In
this section, we discuss the gap between
the results of dependability research and
the incorporation of these results into the
engineering of complex systems. Most
dependability research focuses on lower-
level actions such as exception handling,
often with new languages [13]. Our
DoDAF experience is with Telelogic’s
high-quality System Architect for DoDAF
(Vers. 10.3.19), which supported all mod-
eling requirements of a portion of a large
multi-year project.

DoDAF supports the creation of sev-
eral types of views, which provide insight

into the complete requirements, design,
and development process. The views can
be classified into three broad categories:
OVs, systems views (SVs), and technical
standards views (TVs), each of which
conveys different aspects of the architec-
ture in several products. All views can be
augmented by providing context, summa-
ry, or overview-level information or an
integrated dictionary to define terms.

OVs depict what is going on in the real
world that is to be supported or enabled
by systems represented in the architecture.
Activities performed as parts of system
operations and the associated information
exchanges among personnel or organiza-
tions are the primary items modeled in
OV. The OV reveals requirements for
capabilities and interoperability.

SVs describe existing and future sys-
tems and physical interconnections that
support the needs of the originating fund-
ing organization that are documented in
the OVs.

TVs are used to catalog standard sys-
tem parts or components and their inter-
connections. This view augments the sys-
tems view with technical detail and fore-
casts of standard technology evolution.
The terms technical view and architectural view
are sometimes used instead, especially in
documents before release 1.0 of the
DoDAF handbook was widely available.

The potential for inclusion of fault tol-
erance in each type of DoDAF view is dis-
cussed in turn. For completeness, some
descriptive material is included in this sec-
tion with minor changes to meet space
limitations; the material is taken from the
public domain DoDAF materials provided
by the DoD Architecture Working Group
as listed in the references.

The first set of DoDAF views
described here is known as OVs, which
show the essence of system operations.
These views are illustrated with diagrams
describing the docking of the Crew
Exploratory Vehicle (CEV) with the
International Space Station (ISS) under
the guidance of ground control.

High-Level Operational Concept
(OV-1)
This is an informal, cartoon-like, graphi-
cal diagram intended for high-level pre-
sentations. Fault tolerance is not usually
illustrated here. Our OV-1 example dia-
gram (Figure 1) shows the tracking and
relay satellite system interface of the ISS
and CEV. The icons and connections are
not entered into any internal data struc-
tures of the CASE tool and, thus, are not
available to the rest of the representa-
tions.

Operational Node Connectivity
(OV-2)
Figure 2 tracks exchange of information
from key operational nodes. Redundant
connections to provide fault tolerance
using backup systems and recovery rou-
tines can be specified here in detail using
OV-2 needlines. The detailed information
needed by the operational nodes is not
displayed in this diagram in Telelogic’s
System Architect for DoDAF tool; such
data is, however, stored internally in a
database and is visible in the OV-3 matrix.

Operational Information
Interchange (OV-3)
This matrix expresses relationships
between the three basic OV architecture
data elements: operational activities, oper-
ational nodes, and information flow. The
matrix is generated automatically from the
detailed information entered in the OV-2
database. This matrix has the same fault-
tolerance aspects as OV-2 diagrams.

Organizational Relationships (OV-4)
This chart clarifies relationships between
organizations and sub-organizations. It is
not applicable to fault tolerance.

Operational Activity Model (OV-5)
Figure 3 (see page 24) delineates lines of
responsibility for activities; uncovers
redundancy; suggests decisions about
streamlining, combining, or omitting
activities; and defines or flags issues that
need to be scrutinized further. It is the
basis for OV-6 depictions of activity
sequencing and timing. Fault tolerance can
be incorporated here explicitly, since opera-
tional control activity redundancy (a DoDAF

1

TDRSS TDRSS

Ground

CEV ISS

Ground

Figure 1: High-Level Operational Concept
(OV-1)

1

TDRSS TDRSS

Ground

CEV ISS

Ground

Figure 2: Operational Nose Connectivity
(OV-2)

Issues Using DoDAF to Engineer Fault-Tolerant Systems of Systems

term) is a primary example of fault toler-
ance.

An OV-5 diagram is shown for the
parent operational node; there are similar
ones (not shown) for each of the child
nodes. The arrows are Input, Control,
Output, and Mechanism (ICOM). An
ICOM diagram always has the Input
arrows on the left of an Operational
Activity Node, Control arrows on the top,
Output arrows on the right, and
Mechanism arrows on the bottom. The
mechanism arrow is an obvious place for
representation of an alternate process if a
fault is detected and a secondary commu-
nications channel (input or output) must
be used. Any primary or secondary com-
munications channels can be included in
an OV-5 diagram.

Operational Activity Sequence and
Timing Descriptions (OV-6)
There are three types of OV-6 descrip-
tions intended to show critical characteris-
tics of dynamic sequencing and timing.
Fault tolerance can be incorporated into
each of them.

Operational Rules Model (OV-6a)
Figure 4 describes what a system does,
using representations such as statecharts,
Petri Nets, and process flow diagrams for
the timing of processes and availability of
operations. Statecharts are used in our
example.

Fault tolerance, at least for known
types of faults, can be represented here in
detail. Icons listed as trajectory not OK and
communication not OK represent a simple

place to show the appropriate redundancy
and fault isolation actions to ensure a
fault-tolerant system operation.

Operational State Transition
Diagram (OV-6b)
Figure 5 describes a system and its transi-
tions from an object-centered view. A top-
level OV-6b diagram is essentially a deci-
sion tree. Fault tolerance can be indicated
in the form of messages when faults are
detected. However, there seems to be little
DoDAF support for tolerance of unantic-
ipated faults (for which messages indicat-
ing faults may not be sent).

Operational Event-Trace Description
(OV-6c)
Figure 6 (see page 26) can be represented
as a set of timelines and interactions for
each important physical object in the sys-
tem with control capabilities. Fault toler-
ance, at least for known types of faults that
can occur only within certain time con-
straints, can be represented here in detail.

Notice that in an OV-6c diagram, there
are two kinds of events: those entirely on
a single system and those that involve
communication between systems. No
assumptions can be made about what hap-
pens on a system’s timeline until an exter-
nal event linking the system to another
occurs. Thus it is possible for the first,
asynchronous, communication from the
CEV to the ground system to be received
after the second communication (the third
arrow) from the CEV to the ISS is
received by the ISS, regardless of it being
sent from the CEV before the first asyn-
chronous communication to the ground
system. It is possible that an outside event
can reach a system while the system is exe-
cuting a wrapper, causing a fault and leav-
ing the system in an inconsistent state.
Examples of this are well known in oper-
ating systems; see for example [14].
Synchronous communications are repre-
sented using explicit acknowledgement.

The complete set of DoDAF system
views is discussed next. These views
describe systems and interconnections
providing for, or supporting, organiza-
tional functions including both opera-
tional and business, as well as associate
system resources to the OV. DoDAF sys-
tem views are often required as part of the
software development process, especially
when developing complex systems.
Particular emphasis is placed on those
views where fault tolerance can be includ-
ed most easily. No diagrams are provided
for reasons of space; see the DoDAF
Deskbook [5] for a more detailed descrip-
tion of these views.

Open Forum

24 CROSSTALK The Journal of Defense Software Engineering October 2007

2

Approach/Docking Communication

ECWA Cautions and Warning Information

CEV Duplex Voice Communication

Command/Data RF and HW

Atmosphere Habitability Verification

Intermodule Air

Structure/Mechanical Data

Audio/Video RF

Command/Telemetry Data

Interrupt Dock

Abort Dock

ISS/CEV Health and Status

Power Status

Order Docking

Permit CEV

Docking

A.0

Manage CEV-ISS Docking

0

Video Audio Ground CrewISS Crew CEV Crew

Docking

Orders

Received

Trajectory Check

Trajectory

Okay

Trajectory Not

Okay

Communication Check

Communication

Okay

Communication

Not Okay

Health and Safety Check

Health and

Safety Okay

Health and

Safety Not Okay

Dock

Okay

Abort

Dock

Prox Operations

for Docking

Mission Scheduled

Operations

ECWA: Emergency Caution, Warning Advisory

RF: Radio Frequency

HW: Hardware

() () () () ()

(
)

Figure 3: Operational Activity Model (OV-5)

Approach/Docking Communication

ECWA Cautions and Warning Information

CEV Duplex Voice Communication

Command/Data RF and HW

Atmosphere Habitability Verification

Intermodule Air

Structure/Mechanical Data

Audio/Video RF

Command/Telemetry Data

Interrupt Dock

Abort Dock

ISS/CEV Health and Status

Power Status

Order Docking

Permit CEV

Docking

A.0

Manage CEV-ISS Docking

0

Video Audio Ground CrewISS Crew CEV Crew

Docking

Orders

Received

Trajectory Check

Trajectory

Okay

Trajectory Not

Okay

Communication Check

Communication

Okay

Communication

Not Okay

Health and Safety Check

Health and

Safety Okay

Health and

Safety Not Okay

Dock

Okay

Abort

Dock

Prox Operations

for Docking

Mission Scheduled

Operations

ECWA: Emergency Caution, Warning Advisory

RF: Radio Frequency

HW: Hardware

() () () () ()

(
)

Figure 4: Operational Rules Model (OV-6a)

Issues Using DoDAF to Engineer Fault-Tolerant Systems of Systems

October 2007 www.stsc.hill.af.mil 25

Systems Interface Description (SV-1)
This identifies nodes, systems, and system
items and their interconnections, mapping
systems by their interfaces to the nodes
and needlines described in OV-2. Any
fault tolerance using backup systems and
recovery routines is carried over directly
from OV-2 diagrams. Systems responsible
for fault tolerance, including backup sys-
tems can be specified here. However, no
formal language has been provided for
this specification.

Since there is no formal language or
methodology to support fault tolerance
directly within DoDAF, one workaround
is to annotate these and all related dia-
grams. Unfortunately, the annotations will
not be inserted directly into a CASE tool’s
information repository; hence, the CASE
tool’s internal consistency checking will
not be available.

Systems Communications
Description (SV-2)
This describes details of links in an SV-1
diagram into communications nodes,
paths, and networks. Techniques to handle
known classes of faults of specific nodes
paths, or networks, can be incorporated
into this diagram. Any hardware redun-
dancy for fault tolerance, including stand-
by systems, can be specified here.

Systems-Systems Matrix (SV-3)
This matrix shows relationships among
systems in a given architecture such as sys-
tem-type interfaces, planned versus exist-
ing interfaces, etc. In theory, it is useful in
identifying alternate forms of communi-
cation between systems if there is a fault.
However, there is no formal way of spec-
ifying such alternate communication with-
in DoDAF. One potential workaround is
to manually include the appropriate alter-
native relationships. As before, such anno-
tations are not generally included within
the CASE tool’s internal representation of
the systems within the architecture and,
thus, the tool’s consistency checks are not
done automatically.

Systems Functionality Description
(SV-4)
This describes functions performed by
systems and the system data flows between
system functions. Lower-level diagrams
can be either functional or data-flow
decompositions of top-level diagrams.
Since faults theoretically can occur when-
ever data is created, processed, or stored,
fault tolerance procedures can be incorpo-
rated directly into these diagrams and,
therefore, into the CASE tool’s internal
repository for system consistency analysis.

Operational Activity to Systems
Function Traceability Matrix (SV-5)
This provides mappings either of systems
to capabilities or of system functions to
operational activities. It is important to
know which systems may be affected by a
fault in an operational node; hence, fault tol-
erance is important here. Alternate safe
states, recovery blocks, and redundant hard-
ware can be specified for anticipated faults.
Unfortunately, there is no obvious way to
indicate alternative software/hardware
paths in the event of an unknown failure.

Systems Data Exchange Matrix
(SV-6)
This provides details of system data ele-
ments being exchanged between systems
and their attributes. Since faults theoreti-
cally can occur whenever data is created,
processed, or stored, fault tolerance can
be incorporated anywhere in this matrix
(as was the case with SV-4 diagrams).

Systems Performance Parameters
Matrix (SV-7)
This provides performance characteristics

Docking

 Sequence

Commenced

-Sim Type --------

 1

CEV

communication

 with ISS okay

 2

CEV is outside

Approach

Ellipsoid

 7

CEV is inside

Keep Out Sphere

 Process

1

 4

CEV is outside of

Keep Out Sphere

 Process

 8

Either Comm. works, or

is lost for no more

than two minutes

 Process

 1

--

 9

Either Comm. works, or

is lost for no more

than 10 seconds

 Process

1

--

 5

All health and

safety dhecks

passed

 1

Continue Dock

 Process

 1

 6

Mission

 Scheduled

Operations

J4

J2

••••

Communications

Checks During

Docking

••••

••••

••••

••••

••••

••••

••••

••••

-Sim Type -Sim Type

-Sim Type

-Sim Type

-Sim Type

-Sim Type

-Sim Type

-Sim Type

Figure 5: Operational State Transition Diagram (OV-6b)

of SV elements for appropriate time
frames. System faults due to distributed
denial-of-service attacks can be addressed
here. Delay-tolerant networks can serve as
a useful recovery system. (An introduction
to delay-tolerant networks is provided in
[15].)

Systems Evolution Description (SV-8)
This lists planned incremental steps
toward migrating a suite of systems to a
more efficient suite or toward evolving a
current system to a future implementa-
tion. This is the primary place where
assessment of COTS products and their
interfaces come into play when consider-
ing future fault tolerance.

Systems Technology Forecast (SV-9)
This is a text-based prediction of emerg-
ing technologies and software/hardware
products, including assessment of COTS
products and their interfaces, that are
expected to be available in a given time
period and that will affect future develop-
ment of the architecture.

Systems Rules Model (SV-10a)
This identifies constraints that are
imposed on system functionality due to
some aspect of systems design or imple-
mentation. Such rules are often written in
a relatively formal version of English
(often called Structured English) using IF-
THEN rules to indicate, say, timing or
performance requirements. A more for-
mal description than this would be useful
for improving fault tolerance.

Systems State Transition Description
(SV-10b)
This identifies responses of a system to
events. The diagram is a systems-level ver-
sion of OV-6b diagrams. This is clearly a
place for fault tolerance, especially since
linkages and nodes are placed directly into
the CASE tool’s internal repository for
system consistency analysis.

Systems Event Trace Description
(SV-10c)
This is also used to describe system func-
tionality. It identifies system-specific refine-
ments of critical sequences of events
described in OVs. The diagram is a sys-
tems-level version of OV-6c diagrams. This
is clearly a place for fault tolerance espe-
cially since linkages and nodes are placed
directly into the CASE tool’s internal
repository for system consistency analysis.

Physical Schema (SV-11)
This describes the physical implementa-
tion of the Logical Data Model entities to
physical schema. Since this is the primary
place where the failure of a server or data
store is described in DoDAF views, hard-
ware redundancy should be used, at least,
here to improve system fault-tolerance.

There are two other types of DoDAF
views that are not discussed here because
they do not directly concern fault-tolerant
systems: TVs, which list current and fore-
cast standards, and all views, which include
any overarching aspects, including doc-
trine; tactics, techniques, and procedures;
goals and vision statements; concepts of

operations; scenarios; and environmental
conditions.

Conclusion and Further Work
It is clear that DoDAF is a complex frame-
work that was intended for an even more
complex problem – creating an SoS. The
process for designing even a portion of a
moderate sized system using DoDAF and
a typical CASE tool is time-consuming,
requiring several online tutorials and mul-
tiple presentations, along with hands-on
help. One would expect strong support for
fault tolerance, especially since DoDAF
was intended initially for military systems.
Indeed, the timing requirements that could
be represented easily, say, in the OV-6a,
OV-6b, and OV-6c operational views, and
SV-10a, SV-10b, and SV-10c system views
might include fault tolerance.

However, the reality is otherwise. The
three most readily available sources of
DoDAF documentation – the DoDAF
deskbook, and volumes I and II of the
DoDAF architectural framework – do not
even mention the word fault. This is a
strong indication of the lack of support
for fault tolerance in the use of DoDAF
within a systems engineering process.
Again, this suggests an opportunity for
having fault tolerance research incorporat-
ed into large-scale systems engineering
methodologies and into high-quality
industrial CASE tools.

There are many opportunities for the
dependability community to increase
research collaborations, especially in the
engineering of SoS. The development of
specific graphical notations for fault toler-
ance, such as coordinated atomic actions,
and their eventual incorporation into
commercial CASE tools and large archi-
tectural frameworks provides the potential
to have fault tolerance built into systems
rather than being an add-on.

Development of an expert system
module to be incorporated into CASE
tools holds considerable promise. Fault
tolerance is critical, and support for it is
likely to become more important in the
future. Perhaps this support can be in the
form of an expert system add-on to
advise on fault tolerance, or in creation of
a graphical notation that explicitly sup-
ports fault-tolerant designs and imple-
mentations. Having such support early in
the life cycle can have a great effect on the
creation of real fault-tolerant systems.

The convergence of the computer
security and dependability fields is highly
encouraging, since it provides an opportu-
nity to study fault isolation and mitigation
techniques during denial-of-service and

Open Forum

26 CROSSTALK The Journal of Defense Software Engineering October 2007

CEV Timeline ISS Timeline Ground Timeline

Establish space-to-space communication

 Establish space-to-space communication

CEV inertial position, vel., attitude, and rates

Send CEV inertial position, vel., attitude and rates

 Send CEV Health and Safety

Send CEV Health and Safety

Request to MPTFO

Request Approved by MPTFO

 Request to ISS

Request Approved by ISS

Approach Initiation (AI) burn

Transition initiation (Ti) burn

CEV Trajectory passed station-keeping points

 CEV enters Approach Ellipsoid

CEV intercepts ISS +Vbar

Go for final approach

 Go for final approach

CEV enters Keep Out Sphere

Execute Prox Ops Final Maneuvers

Inhibit attitude control

 Inhibit attitude control

 CAPTURE

MPTFO: Mission Planning Training and Flight Operation

Figure 6: Operational Event Trace Description (OV-6c)

Issues Using DoDAF to Engineer Fault-Tolerant Systems of Systems

October 2007 www.stsc.hill.af.mil 27

similar attacks.
A major goal of this article is to pro-

vide an impetus for the dependability
community to affect the functionality of
CASE tools and frameworks to provide
early life-cycle support for fault tolerance.
Clearly, the lack of early life-cycle support
for fault tolerance makes it more difficult
to include it within the design of complex
SoS. It remains to be determined if there
will be enough perceived return on invest-
ment in order for CASE tool vendors to
add fault tolerance to DoDAF.u

Acknowledgement
This research was partially supported by
the National Science Foundation under
grant number 0324818. The views and
conclusions contained in this document
are those of the author and should not be
interpreted as representing the official
policies, either express or implied, of the
U. S. Government.

References
1. Randell, B. “System Structure for

Software Fault Tolerance.” IEEE
Trans. Software Engineering 11.2
(1975).

2. Avizienis, A., and J.P. Kell. “Fault
Tolerance by Design Diversity: Con-
cepts and Experiments.” Computer
Aug. 1994: 67-80.

3. CMMI Product Team. “CMMI for
Development.” Version 1.2. Technical
Report CMU/SEI-2006-TR-008.
Pittsburgh: Software Engineering
Institute (SEI), Carnegie Mellon
University (CMU), 2006.

4. Capability Maturity Model. Version
1.0. Pittsburgh: SEI/CMU, 1991.

5. DoD. DoDAF_v1_Deskbook. DoD
Architecture Working Group, 2004
<https://acc.dau.mil/CommunityBro
wser.aspx?id=31667>.

6. DoD. DoDAF v1 Volume I. DoD
Architecture Working Group, 2004
<jitc.fhu.disa.mil/jitc_dri/pdfs/dodaf
_v1v1.pdf>.

7. DoD. DoDAF v1 Volume II. DoD
Architecture Working Group, 2004
<jitc.fhu.disa.mil/jitc_dri/pdfs/dodaf
_v1v2.pdf>.

8. Mittal, Saurabh. “Extending DoDAF
to Allow Integrated DEVS-based
Modeling and Simulation.” JDMS: The
Journal of Defense Modeling and
Simulation: Applications, Method-
ology, Technology 3.2 (2006).

9. Voas, Jeffrey M. “COTS and High
Assurance: An Oxymoron?” Proc. of
the 4th IEEE International
Symposium on High-Assurance
Systems Engineering (HASE ‘99),

November 17-19 1999, Washington:
IEEE Computer Society, 1999.

10. Voas, Jeffrey M., and Jeffrey E. Payne.
“Dependability Certification of
Software Components.” Journal of
Systems and Software 52.2-3 (2000):
165-172.

11. Corman, David. “The IULS Approach
to Software Wrapper Technology for
Upgrading Legacy Systems.”
CrossTalk Dec. 2001 <www.stsc.
hill.af.mil./crosstalk/2001/1201>.

12. Leach, Ronald J. “Can this COTS-
Based System Be Saved?” PC/104
Embedded Solutions 9.4 (2005): 38-44.

13. Oliveira Guimaraes, Jose. “The Green
Language Exception System.” The
Computer Journal 47.6 (2004): 651-
661.

14. Silberschatz, A., Galvin, P., and G.
Gagne. Operating Systems Concepts.
New York: John Wiley, 2005.

15. Li, Jiang, et al. “Customizable
Localized Computation of Connected
Dominating Sets for Self-Organizing
Wireless Networks.” Proc. of the
Second International Conference on
Embedded Software and Systems
(ICESS’05). IEEE, 2005.

About the Author

Ronald J. Leach, Ph.D.,
is professor and chair of
the Department of
Systems and Computer
Science at Howard
University. He does

research in software engineering with
special interest in reuse, metrics, fault
tolerance, performance modeling,
process improvement, and the efficient
development of complex software sys-
tems. Leach is the author of five books
and more than 65 other published tech-
nical articles. He has bachelor’s, master’s,
and doctorate degrees in mathematics
from the University of Maryland, and a
master’s degree in computer science
from Johns Hopkins University. He has
three children, a terrific grandson, two
grandcats, and one granddog.

Department of Systems and
Computer Science
School of Engineering
Howard University
Washington, D.C. 20059
Phone: (202) 806-6650
Fax: (202) 806-4531
E-mail: rjl@scs.howard.edu

Get Your Free Subscription

Fill out and send us this form.

517 SMXS/MXDEA

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

JULY2006 c NET-CENTRICITY

AUG2006 c ADA 2005

SEPT2006 c SOFTWARE ASSURANCE

OCT2006 c STAR WARS TO STAR TREK

NOV2006 c MANAGEMENT BASICS

DEC2006 c REQUIREMENTS ENG.

JAN2007 c PUBLISHER’S CHOICE

FEB2007 c CMMI

MAR2007 c SOFTWARE SECURITY

APR2007 c AGILE DEVELOPMENT

MAY2007 c SOFTWARE ACQUISITION

JUNE2007 c COTS INTEGRATION

JULY2007 c NET-CENTRICITY

AUG2007 c STORIES OF CHANGE

SEPT2007 c SERVICE-ORIENTED ARCH.

To Request Back Issues on Topics Not
Listed Above, Please Contact <stsc.
customerservice@hill.af.mil>.

28 CROSSTALK The Journal of Defense Software Engineering October 2007

There is an ongoing debate that questions
whether there are differences between a

system and a system of systems (SoS). For
purposes of this discussion, we define a sys-
tem to be a construct or collection of different ele-
ments that together produce results not obtainable by
the elements alone. The elements – or parts –
can include people, hardware, software, facil-
ities, policies, and documents; that is, all
things required to produce systems-level
results [1]. On the other hand, an SoS is a
condition where a majority of the following
five characteristics are present: operational
independence, managerial independence,
geographic distribution, emergent behavior,
and evolutionary development [2]. There are
numerous definitions for both systems and
SoS, but in essence there are three schools of
thought that exist on the issue of similarities
and differences.

The first school believes that there are
fundamental differences between the systems
and SoS and, as a result, they warrant differ-
ent names, methodologies, and tools to bring
them to realization. The pro-difference camp
appears to represent a majority on the debate,
as evidenced by the amount of its advocacy
across government, industry, and academia.
Examples within the last five years include
the following:
• Inauguration of the Institute of

Electrical and Electronics Engineers
(IEEE) Conference on SoS.

• Inception of the International Journal of
SoS Engineering.

• Definition of the SoS signature area at
Purdue University.

• Creation of the National Center for
Systems of Systems Engineering at Old
Dominion University.

• Inclusion of SoS considerations in the
Systems Engineering Chapter of the
Defense Acquisition Guidebook [3].

• Procurement and development of sys-
tems uniquely labeled as System-of-
Systems such as the Army’s Future
Combat Systems by Boeing, Science
Applications International Corporation,
and thousands of subcontractors.

• Creation of the SoS Engineering Center
of Excellence by the Office of the Under

Secretary of Defense for Acquisition,
Technology and Logistics, specifically the
Deputy Director of Joint Force
Integration.
The second school believes that SoS is

simply an unnecessary term for a system, and
that society should not be influenced by this
subtlety. To follow Rechtin’s heuristic: One
man’s architecture is another man’s detail [4].
Similarly, an SoS for one organization may be
seen as a system to another. The advocates
for this approach believe that traditional sys-
tems engineering practices along with effec-
tive program management will be sufficient
for both systems and SoS.

The third school is agnostic on the issue,
playing the wait-and-see game. Since there may
not be enough evidence to prove that there is
or is not a difference, then there is no sense
in claiming loyalty to either of the first two
schools of thought to avoid the risk of being
wrong. This opinion represents the minority,
since from a practical perspective there are
few engineers who are unwilling to take a side
on technical issues.

At the center of the debate about the
semantic difference between systems and
SoS are the engineering activities that are
involved in each. For the definition of sys-
tems engineering, for example, we can turn
to widely accepted standards [5, 6, 7] used to
define the what and how of the activities
needed to engineer a system. However, con-
sensus has not been reached on the activities
needed to engineer an SoS. Despite the
ongoing debate, organizations need to take
action on the systems they want to create.
But how does one make sense of these con-
cepts? The following section provides a
framework to help make sense of this debate.

Normative,Descriptive,and
Prescriptive Framework
To help structure the discussion, a frame-
work is proposed that provides a categoriza-
tion of concepts into normative, descriptive,
and prescriptive models. For purposes of this
discussion, the term model is used to include
formal and informal representations of
structure.

A normative model is one that represents
norms or cultural standards. Similarly, a nor-
mative statement describes how the world
should be; it provides a yardstick to measure
whether something is good. One example is
the IEEE 1220 standard entitled Application
and Management of the Systems Engineering Process
[5]. As a normative model, it describes how
systems engineering ought to be implement-
ed for the realization of successful programs.
Because these standards result from reflec-
tion and analysis, normative models are rep-
resentative of the type of models developed
in philosophy, mathematics, and other theo-
ry-based disciplines [8]. In the domain of sys-
tems, the development of normative models
relies on assumptions about how systems will
be implemented, and through interpreting
the implementation, suggests the best way to
build systems. Normative models are analo-
gous to first principles of nature since they
are foundational propositions from which all
other propositions can be deduced.

A descriptive model characterizes actual
behavior of decision-makers, or how the
world actually is. An example is the set of sys-
tems engineering case studies developed by
the Center for Systems Engineering at the
Air Force Institute of Technology [9]. These
include detailed accounts of how systems
engineering was actually done on large pro-
grams such as the B-2 stealth bomber,
Theater Battle Management Core System,
and the Joint Air-to-Surface Standoff Missile.
As descriptive models, these case studies are
a representation of our understanding of
how systems engineering has been done in
the past, whether good or bad. Deviations
from a normative model (i.e., an IEEE stan-
dard) can be highlighted through a descrip-
tive model. Descriptive models capture not
only behavior, but also decision-making,
insofar as the outcomes of the decisions are
discernable, or elicited from decision-makers.
A classical example of a descriptive model is
a regression analysis on empirical data. The
best fit curve to a set of data captures the
essence of empirical reality and can be used
to predict the future but is limited by the con-
text and conditions of the original data
underlying the model.

A Framework for Evolving System of Systems Engineering

We provide a framework for examining the differences between systems engineering and system of systems engineering (SoSE).
By taking normative, descriptive, and prescriptive views of these constructs, similarities and differences can be better identi-
fied. Moreover, we note that additional work is needed in the development of normative and prescriptive models in order to
advance our understanding of both systems engineering and SoSE.

Dr. Ricardo Valerdi, Dr. Adam M. Ross, and Dr. Donna H. Rhodes
Massachusetts Institute of Technology

A Framework for Evolving System of Systems Engineering

October 2007 www.stsc.hill.af.mil 29

Descriptive models also provide insight
into organizational practices of systems engi-
neering. Some organizations, for example,
may think that it is appropriate to allocate
systems engineering functions (i.e., testing,
documentation) to software engineers while
others may decide to treat those as complete-
ly separate functions. A descriptive model
would relate these differences without a justi-
fication in terms of a normative right or wrong
basis, but rather just in terms of stating the
specific process used in organizations.

A prescriptive model is one that aims at
correcting biases with the intent to improve
judgments and decisions according to nor-
mative standards. In other words, a prescrip-
tive model is based on advice on how to best
achieve the ideals suggested by the normative
view, given the facts highlighted through the
descriptive view. An example of a prescrip-
tive model is one that provides practical
directions on how to implement process
improvement through Capability Maturity
Model Integration (CMMI®) in organizations
that develop systems or SoS. It contains the
prescriptive representation of how it can be
done and a strategy on how to get from the
present state (descriptive) to ideal state (nor-
mative) as viewed by best practices in the
software defense industry.

Equipped with these concepts, the differ-
ences between systems and SoS can be con-
sidered through a more analytical perspective.
First, a descriptive view is provided, followed
by a discussion on how normative and pre-
scriptive models can be developed to further
compare systems and systems of systems.

A Descriptive View of Systems
Clearly, there are similarities between systems
and SoS. Some of these similarities are the
following:
• Both can be very complex.
• Both involve people, hardware, software,

facilities, policies, processes, etc.
• Both have purpose.

Even though both systems and SoS share
many traits, it is the difference between them
that provides the basis for debate. A helpful
descriptive view of the issue is to compare
what is involved with engineering a system to
engineering an SoS. Academia [10] and gov-
ernment [11] have highlighted key differences
between the two. We provide an adaptation
of previous work [12] that highlights salient
descriptive differences between traditional
systems engineering practice and SoSE prac-
tice (see Table 1).

Note that not all systems will contain the
attributes in the middle column and not all
SoS will contain the attributes of the third
column, but in general a SoS always requires
at least some of the elements of SoSE.

Presently, there are a number of descrip-

tive research efforts that are helping inform
the debate about the differences between sys-
tem and SoS. In the area of cost estimation,
work is being done to define the unique
attributes of SoS for purposes of developing
a cost model to estimate the SoS integration
effort [13, 14]. This work was motivated by
the inability of existing system-level cost
models to estimate the effort needed to inte-
grate SoS.

As a first step toward a prescriptive
model, the Department of Defense (DoD) is
developing a Guide to System of Systems
Engineering [11], based on best present state
knowledge. The guide provides 16 DoD
technical and management processes to help
sponsors, program managers, and chief engi-
neers address the unique considerations for
DoD SoS. Results from these efforts will
serve to further characterize the state of the
practice of systems engineering and may
begin to identify enablers, barriers, and suc-
cessful techniques for SoS engineering prac-
tice. Ultimately, the observation of real sys-
tems and SoS enable the development of
prescriptive models that are grounded in real-
ity and eventually generate useful prescriptive
guidance. It is important to recognize that
implicit in any prescriptive model is a norma-
tive basis for why a particular guidance is sug-
gested. Users of such guidance should make
an effort to recognize that basis to better
understand the rationale for the guidance and
under what conditions that guidance may be

ill-advised.
Ideally, a normative model is developed

prior to any prescriptive model. In a practical
sense, these often evolve a bit differently. For
example, the DoD Guide to System of
Systems Engineering implicitly relies upon
normative models for traditional systems
engineering [15], due to a lack of SoS nor-
mative models [16]. In the future, normative
models for SoS are needed in order to pro-
vide a sound and defensible basis for good
SoSE practice. Researchers and practitioners
alike should strive towards a better under-
standing of successful systems and SoS and
the development of normative models to
improve understanding of the fundamental
differences between successful systems and
SoS. Recent efforts to define a research agen-
da for SoS architecting [17] demonstrate the
need for government, academia, and industry
to work together to advance the state of
affairs.

Practical Implications
The immaturity of normative models as dis-
cussed has several implications for acquirers
and implementers of SoS. First, there are no
industry best practices that can be used as
normative models to compare how SoS
acquisitions and implementations should be
done. Such a model would describe the ratio-
nale for how best is defined and how it could
be accomplished in an ideal scenario. A nat-
ural progression suggests that descriptive

SoSE

Purpose Development of a single system

to meet stakeholder requirements

and defined performance.

Evolving new system of systems

capability by leveraging

synergies of legacy systems and

emerging capabilities.

Systems

Architecture

Established early in the life cycle;

expectation set remains relatively

stable.

Dynamic adaptation as

emergent needs change.

System

Interoperability

Interface requirements are

defined and implemented for the

integration of components in the

system.

Component systems can

operate independently of SoS in

a useful manner; protocols and

standards are essential to

enable interoperable systems.

Reliability, maintainability, and

availability are typical concerns.

Enhanced emphasis on ilities

such as flexibility, adaptability,

and composability.

Acquisition

and

Management

Centralized acquisition and

management of the system.

Component systems separately

acquired and continue to be

managed and operated as

independent systems.

Anticipation of

Needs

Concept phase activity to

determine system needs.

Intense concept phase analysis

followed by continuous

anticipation, aided by ongoing

experimentation.

Cost Single or homogenous

stakeholder group with stable

cost/funding profile and similar

measures of success.

Multiple heterogeneous

stakeholder groups with

unstable cost/funding profile and

measures of success.

Traditional Systems Engineering

System ilities

Table 1: Areas of Emphasis in Systems Engineering and SoSE [12]

Open Forum

30 CROSSTALK The Journal of Defense Software Engineering October 2007

models will come first through the obser-
vation of successful and unsuccessful SoS.
Subsequently, understanding how SoS
should be acquired and implemented are
derived into normative models. Once a
descriptive model of the present and a
normative model of the ideal future are
developed, a thorough benchmarking
process can begin. The development of
practical strategies and processes, such as
those expressed in a guide, require the
codification of prescriptive models. Since
prescriptive models require descriptive
and normative models as their basis, the
better the descriptive and normative mod-
els, the better the prescriptive advice.

A second implication is that there is a
lack of reference costs and schedule esti-
mates for SoS. This is a crucial void for
predictive estimation models since they
require historical data for their develop-
ment and calibration. This also empha-
sizes the need to capture lessons learned
from completed programs to develop
descriptive models.

Returning to the debate on how the
engineering of a system differs from that
of a SoS requires a sound theoretical and
practical foundation on what these two
processes entail. Much of the research to
date on SoS involves descriptive type
approaches. Advancing prescriptive guid-
ance on how to do SoSE requires a nor-
mative model as well. The absence of val-
idated normative models presents an
opportunity for industry, government, and
academia to collaborate. It is only when

that piece falls into place that a rigorous
and defensible development of a stan-
dardized and successful SoSE process can
take place.u

References
1. Rechtin, E. The Art of Systems Archi-

tecting. New York: CRC Press, 2000.
2. Sage, A., and C. Cuppan. “On the Sys-

tems Engineering and Management of
Systems of Systems and Federations of
Systems.” Information, Knowledge, and
Systems Management 2 (2001): 325-345.

3. Defense Acquisition University (DAU).
Defense Acquisition Guidebook. Vers.
1.06. DAU, 2006.

4. Rechtin, E. Systems Architecting: Crea-
ting and Building Complex Systems. New
Jersey: Prentice Hall, 1990.

5. “Application and Management of the
Systems Engineering Process.” IEEE
1220, 1998.

6. American National Standards Institute
/Electronic Industry Alliance (ANSI/
EIA). “Processes for Engineering a
System.” ANSI/EIA-632-1988. ANSI/
EIA, 1999.

7. International Standards Organization/
International Electrotechnical Commis-
sion (ISO/IEC). “Systems Engineering –
System Life Cycle Processes.” ISO/IEC
15288:2002(E). ISO/IEC, 2002.

8. Baron, J. Thinking and Deciding. 3rd ed.
Cambridge University Press, 2000.

9. Systems Engineering Case Studies. Air
Force Center for Systems Engineering
<www.afit.edu/cse/cases.cfm>.

10. Keating, C., et al. “System of Systems
Engineering.” Engineering Management
Journal 15.3 (2003).

11. Office of the Under Secretary of De-
fense. System of Systems Systems Engi-
neering Guide: Considerations for Sys-
tems Engineering in a System of Systems
Environment. Vers. 0.9. DoD, 2006
<www.acq.osd.mil/se/publications.htm>.

12. Rhodes, D. “Evolving Systems Engi-
neering for Innovative Product and
Systems Development.” Proc. From
Massachusetts Institute of Technology
(MIT) Systems Design and Management
Alumni Conference, Oct. 2004.

13. Lane, J., and R. Valerdi. “Synthesizing
SoS Concepts for Use in Cost Esti-
mation.” Systems Engineering 10.4
(2007).

14. Lane, J. “System of Systems Lead System
Integrators: Where Do They Spend Their
Time and What Makes Them More/Less
Efficient?” USC-CSE-2005-508. Los
Angeles: USC Center for Systems and
Software Engineering, June 2005.

15. Sage, A.P. Systems Engineering. Wiley-
Interscience, 1992.

16. U.S. Air Force. “Report on System of
Systems Engineering for Air Force
Capability Development.” SAB-TR-05-
04. July, 2005.

17. Axelband, E., et al. “A Research Agenda
for Systems of Systems Architecting.”
Proc. of the 17th INCOSE Symposium,
June 2007, San Diego, CA.

About the Authors

Adam M. Ross, Ph.D.,
is a research scientist in
the SEAri at MIT. His re-
search interests are in the
exploration of system
architecture tradespaces,

and the advancement of dynamic value
considerations through quantification
and visualization during the system
design process. Ross has a doctorate in
engineering systems from MIT.

MIT
77 Massachusetts AVE
NE20-388
Cambridge, MA 02139
Phone: (617) 324-0473
Fax: (617) 258-7845
E-mail: adamross@mit.edu

Ricardo Valerdi, Ph.D.,
is a research associate in
the Systems Engineering
Advancement Research
Initiative (SEAri) and a
lecturer in the Engineer-

ing Systems Division at MIT. His
research interests are in systems engi-
neering cost estimation and the synergies
between systems engineering and soft-
ware engineering. Valerdi has a doctorate
in industrial and systems engineering
from USC.

MIT
77 Massachusetts AVE
41-205
Cambridge, MA 02139
Phone: (617) 253-8583
Fax: (617) 258-7845
E-mail: rvalerdi@mit.edu

Donna H. Rhodes,
Ph.D., is the director of
SEAri, Principal Resear-
cher, and is a senior lec-
turer in the Engineering
Systems Division at MIT.

Her research interests are in advanced
systems engineering methods and prac-
tices. Rhodes has a doctorate in systems
science from the State University of
New York, Binghamton.

MIT
77 Massachusetts AVE
NE20-388
Cambridge, MA 02139
Phone: (617) 324-0473
Fax: (617) 258-7845
E-mail: rhodes@mit.edu

BACKTALK

October 2007 www.stsc.hill.af.mil 31

Across the nation, students of all ages are begrudgingly pen-
ning summer vacation essays for English teachers. If your

son or daughter is struggling, maybe they can borrow mine. I vis-
ited my son who spent his summer as a medical officer at a scout
camp on Catalina Island.

Catalina veterans, who have traveled the entire island, know
this is not your typical planes, trains, and automobiles excursion.
It’s more a planes, wait, taxis, wait, ferries, wait, safari buses, wait,
golf-carts-and-hiking-boots type of escapade. Due to the island’s
small airport, rental car dearth, and plethora of Conservancy
(read island mafia) restrictions, travel throughout the island relies
on indigenous services and ... locals.

Island coterie restrictions are ecological, economical, and, at
times, sadistic. Coming from the Mountain West, I’m accustomed
to independent travel, coming and going as I please. After
numerous calls to island proprietors, it was clear that indepen-
dent travel – beyond walking – was out. Rather than buck the sys-
tem, the engineer in me decided homework, planning, and exe-
cution would result in smooth travel. What I did not count on
was island time.

Island time is an attitude, a state of mind that puts time on
the bottom rung of the priority ladder. On island time, a restau-
rant advertising breakfast at 8:00 a.m. may open any time
between 8:30 and 9:00 a.m. On island time, the 12:00 a.m. noise
ordinance may be enforced around 1:00 or 2:00 a.m. On island
time, the Safari Bus requiring passengers to be in line 30 minutes
in advance may depart 30 to 40 minutes after a 10-minute delay
because ticket holders outnumber bus seats. After 15 minutes on
a dusty, bumpy road through the heart of the isle, the bus driver,
under the influence of island time, stops to check if the back
door of the storage compartment containing your luggage is
closed.

On island time, there are two days of the week: today and
tomorrow. Yesterday is a memory, anything beyond tomorrow is
unfathomable, and anything that does not get done today can
wait for tomorrow.

Don’t get me wrong – island time can be relaxing and revital-
izing. However, if you need to travel the length of the island, pick
up your son, take him back the length of the island for a hot
shower, steak dinner, and soft bed and then return the length of
the isle, it can be frustrating. A kind of frustration one can suf-
fer on software projects.

Island time is not much different than a project’s inaugural
time. Inaugural time occurs at the beginning of a project when
requirements are few, resources abundant, and budgets profuse.
On inaugural time, the system is perfect (in your mind), the cus-
tomer is your friend (in your mind), and modules not completed
today can wait until tomorrow (also in your mind).

Unlike island time, extended inaugural time is lethal. Left
uncurbed, a refreshing project expedition turns into a tedious
death march. Before you know it, the blame game commences
and you are singing the blues. Fortunately, you can sing the fol-
lowing song at the company’s project cancellation party at your
local karaoke bar.

(Sung to the tune of Jimmy Buffet’s Margaritaville ... my apologies,
Jimmy):

Feelin’ my wrist ache
Watchin’ my drive bake

Management purists, pushing snake oil
Strummin’ eighty-eight keys,
Trusting they won’t freeze

Top brass wimps, they’re beginnin’ to roil

Wasted away again in Softwaritaville
Searchin’ for my lost taker, of fault

Some people claim that there’s a manager to blame
But I know it’s nobody's fault

I don’t know the reason
For customer treason

Nothing to show but this whip through code glue
But it’s a real beauty

A pension plan booty, how it got here
I haven’t a clue

Wasted away again in Softwaritaville
Searchin’ for my lost taker, of fault

Some people claim that there's a client to blame
Now I think, it could be my fault

I blew out a flip flop
Stepped up an amp drop

Cut a deal; online buy from Saigon
But there’s ruse in the vender

and soon I will tender
A lax obligation that helps us plough on

Wasted away again in Softwaritaville
Searchin’ for my lost taker, of fault

Some people claim that there's a vendor to blame
But I know, it’s my own darn fault

Some people claim that there’s a hacker to blame
And I know it’s my own darn fault

Promptly add the following to your process asset library: “All
members of a failed project, as their last act, are to sing the
failed-project anthem – Softwaritaville – at the project cancella-
tion party.” Enjoy.

— Gary A. Petersen
Arrowpoint Solutions

gpetersen@arrowpoint.us

Softwareitaville

CrossTalk / 517 SMXS/MXDEA
6022 Fir AVE

BLDG 1238

Hill AFB, UT 84056-5820

PRSRT STD

U.S. POSTAGE PAID

Albuquerque, NM

Permit 737

CrossTalk is

co-sponsored by the

following organizations:

	Front Cover
	Table of Contents
	From the Sponsor
	Systems Engineering
	Using the Incremental Commitment Model toIntegrate System Acquisition, Systems Engineering,and Software Engineering
	Systems Engineering for the Global Information Grid:An Approach at the Enterprise Level
	ConOps:The Cryptex to OperationalSystem Mission Success
	Software System Engineering:A Tutorial

	Open Forum
	Issues Using DoDAF to Engineer Fault-TolerantSystems of Systems
	A Framework for Evolving System of Systems Engineering

	Web Sites
	Coming Events
	BackTalk
	Back Cover

